AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ni3Si2O5(OH)4 Multi-Walled Nanotubes with Tunable Magnetic Properties and Their Application as Anode Materials for Lithium Batteries

Yan Yang1,2,§Qingqin Liang1,§Jinghong Li1( )Yuan Zhuang1Yunhua He2Bo Bai2Xun Wang1( )
Department of Chemistry Tsinghua UniversityBeijing 100084 China
College of Environmental Science and Engineering Chang'an UniversityXi'an 710054 China

§ Contributed equally to this work

Show Author Information

Graphical Abstract

Abstract

Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200–210 ℃ using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA·h·g−1 after 21 cycles at a rate of 20 mA·g−1. Furthermore, after the nanotubes were calcined (600 ℃, 4 h) or reduced (180 ℃, 10 h), the corresponding discharge capacities increased to 277.2 mA·h·g−1 and 308.5 mA·h·g−1, respectively.

Electronic Supplementary Material

Download File(s)
nr-4-9-882_ESM.pdf (768.6 KB)

References

1

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

2

Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.

3

Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron Nitride nanotubes. Science 1995, 269, 966–967.

4

Goldberger, J.; Fan, R.; Yang, P. D. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 2006, 39, 239–248.

5

Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.

6

Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.

7

Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.

8

Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2420.

9

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.

10

Wang, X.; Zhuang, J.; Chen, J.; Zhou, K. B.; Li, Y. D. Thermally stable silicate nanotubes. Angew. Chem. Int. Ed. 2004, 43, 2017–2020.

11

Zhuang, Y.; Yang, Y.; Xiang, G. L.; Wang, X. Magnesium silicate hollow nanostructures as highly efficient absorbents for toxic metal ions. J. Phys. Chem. C 2009, 113, 10441–10445.

12

Yang, Y.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Fine tuning of the dimensions of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions. Nano Res. 2010, 3, 581–593.

13

Roy, D. M.; Roy, R. An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Amer. Mineral. 1954, 19, 957–975.

14

Perbost, R.; Amouric, M.; Olives, J. Influence of cation size on the curvature of serpentine minerals: HRTEM–AEM study and elastic theory. Clays Clay Miner. 2003, 51, 430–438.

15

Korytkova, E. N.; Pivovarova, L. N.; Drozdova, I. A.; Gusarov, V. V. Synthesis of nanotubular nickel hydrosilicates and nickel–magnesium hydrosilicates under hydrothermal conditions. Glass Phys. Chem. 2005, 31, 797–802.

16

Korytkova, E. N.; Maslov, A. V.; Pivovarova, L. N.; Polegotchenkova, Y. V.; Povinich, V. F.; Gusarov, V. V. Synthesis of nanotubular Mg3Si2O5(OH)4–Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures. Inorg. Mater. 2005, 41, 743–749.

17

McDonald, A.; Scott, B.; Villemure, G. Hydrothermal preparation of nanotubular particles of a 1: 1 nickel phyllosilicate. Micropor. Mesopor. Mater. 2009, 120, 263–266.

18

Pauling, L. The structure of the chlorites. Proc. Natl. Acad. Sci. U.S.A. 1930, 16, 578–582.

19

Hu, S.; Wang, X. MoO3 single-walled nanotubes. J. Am. Chem. Soc. 2008, 130, 8126–8127.

20

Foresiti, E.; Hochella, M. F.; Kornishi, H.; Lesci, I. G.; Madden, A. S.; Roveri, N.; Xu, H. Morphological and chemical/physical characterization of Fe-doped synthetic chrysotile nanotubes. Adv. Funct. Mater. 2005, 15, 1009–1016.

21

Suquet, H. Effects of dry grinding and leaching on the crystal structures of chrysotile. Clays Clay Miner. 1989, 37, 439–445.

22

Al-Alayed, O. S.; Kunzru, D. Cyclohexane dehydrogenation on a nickel catalyst–kinetics and catalyst fouling. J. Chem. Technol. Biotechnol. 1988, 43, 23–38.

23

Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J. H.; Bae, C. J.; Park, J. G.; Hyeon, T. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17, 429–434.

24

Killelea, D. R.; Campbell, V. L.; Shuman, N. S.; Utz, A. L. Bond-selective control of a heterogeneously catalyzed reaction. Science 2008, 319, 790–793.

25

McCarren, P. R.; Liu, P.; Cheong, P. H. Y.; Jamison, T. F.; Houk, K. N. Mechanism and transition-state structures for nickel-catalyzed reductive alkyne–aldehyde coupling reactions. J. Am. Chem. Soc. 2009, 131, 6654–6655.

26

Bozorth, R. M. Ferromagnetism; D. Van Nostrand Company, Inc.: New York, 1951.

27

Ma, R.; Bando, Y.; Zang, L.; Sasaki, T. Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements. Adv. Mater. 2004, 16, 918–922.

28

Park, D. H.; Lee, S. H.; Kim, T. W.; Lim, S. T.; Hwang, S. J.; Yoon, Y. S.; Lee, Y. H.; Choy, J. H. Non-hydrothermal synthesis of ID nanostructured manganese-based oxides: Effect of cation substitution on the electrochemical performance of nanowires. Adv. Funct. Mater. 2007, 17, 2949–2956.

29

Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712–3716.

Nano Research
Pages 882-890
Cite this article:
Yang Y, Liang Q, Li J, et al. Ni3Si2O5(OH)4 Multi-Walled Nanotubes with Tunable Magnetic Properties and Their Application as Anode Materials for Lithium Batteries. Nano Research, 2011, 4(9): 882-890. https://doi.org/10.1007/s12274-011-0144-7

1193

Views

137

Crossref

N/A

Web of Science

138

Scopus

15

CSCD

Altmetrics

Received: 17 March 2011
Revised: 25 April 2011
Accepted: 27 April 2011
Published: 16 May 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return