Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200–210 ℃ using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA·h·g−1 after 21 cycles at a rate of 20 mA·g−1. Furthermore, after the nanotubes were calcined (600 ℃, 4 h) or reduced (180 ℃, 10 h), the corresponding discharge capacities increased to 277.2 mA·h·g−1 and 308.5 mA·h·g−1, respectively.
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.
Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron Nitride nanotubes. Science 1995, 269, 966–967.
Goldberger, J.; Fan, R.; Yang, P. D. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 2006, 39, 239–248.
Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.
Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.
Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2420.
Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.
Wang, X.; Zhuang, J.; Chen, J.; Zhou, K. B.; Li, Y. D. Thermally stable silicate nanotubes. Angew. Chem. Int. Ed. 2004, 43, 2017–2020.
Zhuang, Y.; Yang, Y.; Xiang, G. L.; Wang, X. Magnesium silicate hollow nanostructures as highly efficient absorbents for toxic metal ions. J. Phys. Chem. C 2009, 113, 10441–10445.
Yang, Y.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Fine tuning of the dimensions of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions. Nano Res. 2010, 3, 581–593.
Roy, D. M.; Roy, R. An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Amer. Mineral. 1954, 19, 957–975.
Perbost, R.; Amouric, M.; Olives, J. Influence of cation size on the curvature of serpentine minerals: HRTEM–AEM study and elastic theory. Clays Clay Miner. 2003, 51, 430–438.
Korytkova, E. N.; Pivovarova, L. N.; Drozdova, I. A.; Gusarov, V. V. Synthesis of nanotubular nickel hydrosilicates and nickel–magnesium hydrosilicates under hydrothermal conditions. Glass Phys. Chem. 2005, 31, 797–802.
Korytkova, E. N.; Maslov, A. V.; Pivovarova, L. N.; Polegotchenkova, Y. V.; Povinich, V. F.; Gusarov, V. V. Synthesis of nanotubular Mg3Si2O5(OH)4–Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures. Inorg. Mater. 2005, 41, 743–749.
McDonald, A.; Scott, B.; Villemure, G. Hydrothermal preparation of nanotubular particles of a 1: 1 nickel phyllosilicate. Micropor. Mesopor. Mater. 2009, 120, 263–266.
Pauling, L. The structure of the chlorites. Proc. Natl. Acad. Sci. U.S.A. 1930, 16, 578–582.
Hu, S.; Wang, X. MoO3 single-walled nanotubes. J. Am. Chem. Soc. 2008, 130, 8126–8127.
Foresiti, E.; Hochella, M. F.; Kornishi, H.; Lesci, I. G.; Madden, A. S.; Roveri, N.; Xu, H. Morphological and chemical/physical characterization of Fe-doped synthetic chrysotile nanotubes. Adv. Funct. Mater. 2005, 15, 1009–1016.
Suquet, H. Effects of dry grinding and leaching on the crystal structures of chrysotile. Clays Clay Miner. 1989, 37, 439–445.
Al-Alayed, O. S.; Kunzru, D. Cyclohexane dehydrogenation on a nickel catalyst–kinetics and catalyst fouling. J. Chem. Technol. Biotechnol. 1988, 43, 23–38.
Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J. H.; Bae, C. J.; Park, J. G.; Hyeon, T. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17, 429–434.
Killelea, D. R.; Campbell, V. L.; Shuman, N. S.; Utz, A. L. Bond-selective control of a heterogeneously catalyzed reaction. Science 2008, 319, 790–793.
McCarren, P. R.; Liu, P.; Cheong, P. H. Y.; Jamison, T. F.; Houk, K. N. Mechanism and transition-state structures for nickel-catalyzed reductive alkyne–aldehyde coupling reactions. J. Am. Chem. Soc. 2009, 131, 6654–6655.
Bozorth, R. M. Ferromagnetism; D. Van Nostrand Company, Inc.: New York, 1951.
Ma, R.; Bando, Y.; Zang, L.; Sasaki, T. Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements. Adv. Mater. 2004, 16, 918–922.
Park, D. H.; Lee, S. H.; Kim, T. W.; Lim, S. T.; Hwang, S. J.; Yoon, Y. S.; Lee, Y. H.; Choy, J. H. Non-hydrothermal synthesis of ID nanostructured manganese-based oxides: Effect of cation substitution on the electrochemical performance of nanowires. Adv. Funct. Mater. 2007, 17, 2949–2956.
Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712–3716.