Journal Home > Volume 4 , Issue 9

In this work, FePt–Au heterostructured nanocrystals (HNCs) such as tadpole-, dumbbell-, bead-, and necklace-like nanostructures were synthesized by a facile heteroepitaxial growth of Au NCs onto FePt nanorods (NRs). A study of the growth mechanism revealed that the morphology control of the final products can be correlated with the adsorption sites of hydrogen onto the FePt NRs, which can be manipulated by the amount of the forming gas (Ar/7% H2) added. Not only the optical characteristic and magnetic properties of the intrinsic materials were retained in the products, but also the FePt–Au HNCs showed the tunable multifunctional properties resulted from the interactions between Au and FePt. Moreover, for methanol oxidation, the FePt–Au HNCs exhibited enhanced catalytic activity and CO tolerance on the catalyst surface compared to commercial Pt catalysts. It is worth noting that as multifunctional units, the FePt–Au HNCs also possess a heterogeneous surface, which could potentially enable their site-specific functionalization for targeting or imaging purposes in biomedical applications. More interestingly, the catalytic properties of the FePt–Au HNCs also endow this material with application potentials in nanocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled Synthesis and Multifunctional Properties of FePt–Au Heterostructures

Show Author's information Jiajia Wu1Yanglong Hou2( )Song Gao1( )
Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular EngineeringBeijing 100871 China
Department of Advanced Materials and Nanotechnology College of Engineering, Peking UniversityBeijing 100871 China

Abstract

In this work, FePt–Au heterostructured nanocrystals (HNCs) such as tadpole-, dumbbell-, bead-, and necklace-like nanostructures were synthesized by a facile heteroepitaxial growth of Au NCs onto FePt nanorods (NRs). A study of the growth mechanism revealed that the morphology control of the final products can be correlated with the adsorption sites of hydrogen onto the FePt NRs, which can be manipulated by the amount of the forming gas (Ar/7% H2) added. Not only the optical characteristic and magnetic properties of the intrinsic materials were retained in the products, but also the FePt–Au HNCs showed the tunable multifunctional properties resulted from the interactions between Au and FePt. Moreover, for methanol oxidation, the FePt–Au HNCs exhibited enhanced catalytic activity and CO tolerance on the catalyst surface compared to commercial Pt catalysts. It is worth noting that as multifunctional units, the FePt–Au HNCs also possess a heterogeneous surface, which could potentially enable their site-specific functionalization for targeting or imaging purposes in biomedical applications. More interestingly, the catalytic properties of the FePt–Au HNCs also endow this material with application potentials in nanocatalysis.

Keywords: Heterostructure, magnetism, nanocatalysis, heteroepitaxy, multifunctionality

References(60)

1

Zeng, H.; Sun, S. H. Syntheses, properties and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 2008, 18, 391–400.

2

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

3

Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 5664–5665.

4

Gu, H.; Yang, Z.; Gao, J.; Chang, C. K.; Xu, B. Heterodimers of nanoparticles: Formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127, 34–35.

5

Choi, J. P.; Murray, R. W. Electron self-exchange between Au140+/0 nanoparticles is faster than that between Au38+/0 in solid-state, mixed-valent films. J. Am. Chem. Soc. 2006, 128, 10496–10502.

6

Selvan, S. T.; Patra, P. K.; Ang, C. Y.; Ying, J. Y. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. 2007, 46, 2448–2452.

7

Lin, Y. S.; Wu, S. H.; Hung, Y.; Chou, Y. H.; Chang, C.; Lin, M. L.; Tsai, C. P.; Mou, C. Y. Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chem. Mater. 2006, 18, 5170–5172.

8

Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. Au–Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem. Int. Ed. 2008, 47, 173–176.

9

Wang, C.; Daimon, H.; Sun, S. H. Dumbbell-like Pt–Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett. 2009, 9, 1493–1496.

10

Lee, Y. M.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H. Synthetic tuning of the catalytic properties of Au–Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 1271–1274.

11

Cao, Y. W.; Banin, U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 2000, 122, 9692–9702.

12

Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207–211.

13

Sobal, N. S.; Hilgendorff, M.; Mohwald, H.; Giersig, M.; Spasova, M.; Radetic, T.; Farle, M. Synthesis and structure of colloidal bimetallic nanocrystals: The non-alloying system Ag/Co. Nano Lett. 2002, 2, 621–624.

14

Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.

15

Rodriguez-Gonzalez, B.; Burrows, A.; Watanabe, M.; Kiely, C. J.; Liz-Marzan, L. M. Multishell bimetallic AuAg nano-particles: Synthesis, structure and optical properties. J. Mater. Chem. 2005, 15, 1755–1759.

16

Xu, Z. C.; Hou, Y. L.; Sun, S. H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129, 8698–8699.

17

Park, J. I.; Cheon, J. Synthesis of "solid solution" and "core–shell" type cobalt–platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 2001, 123, 5743–5746.

18

Hirakawa, T.; Kamat, P. V. Charge separation and catalytic activity of Ag@TiO2 core–shell composite clusters under UV-irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934.

19

Dawson, A.; Kamat, P. V. Semiconductor-metal nano-composites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J. Phys. Chem. B 2001, 105, 960–966.

20

Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater. 2010, 22, 3277–3282.

21

Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.

22

Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS–Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.

23

Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. Synthesis and characterization of Co/CdSe core/shell nanocomposites: Bifunctional magnetic-optical nanocrystals. J. Am. Chem. Soc. 2005, 127, 544–546.

24

Chakrabortty, S.; Yang, J. A.; Tan, Y. M.; Mishra, N.; Chan, Y. T. Asymmetric dumbbells from selective deposition of metals on seeded semiconductor nanorods. Angew. Chem. Int. Ed. 2010, 49, 2888–2892.

25

Dukovic, G.; Merkle, M. G.; Nelson, J. H.; Hughes, S. M.; Alivisatos, A. P. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 2008, 20, 4306–4311.

26

Habas, S. E.; Yang, P. D.; Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 2008, 130, 3294–3295.

27

He, S. L.; Zhang, H. W.; Delikanli, S.; Qin, Y. L.; Swihart, M. T.; Zeng, H. Bifunctional magneto-optical FePt–CdS hybrid nanoparticles. J. Phys. Chem. C 2009, 113, 87–90.

28

Wetz, T.; Soulantica, K.; Talqui, A.; Respaud, M.; Snoeck, E.; Chaudret, B. Hybrid Co–Au nanorods: Controlling Au nucleation and location. Angew. Chem. Int. Ed. 2007, 46, 7079–7081.

29

Casavola, M.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Pinel, E. F.; Garcia, M. A.; Manna, L.; Cingolani, R.; Cozzoli, P. D. Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. Nano Lett. 2007, 7, 1386–1395.

30

Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Curri, M. L.; Innocenti, C.; Sangregorio, C.; Achterhold, K.; Parak, F. G.; Agostiano, A.; Cozzoli, P. D. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic gamma-Fe2O3 spherical domain. J. Am. Chem. Soc. 2006, 128, 16953–16970.

31

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 2010, 49, 4878–4897.

32

Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

33

Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

34

Zeng, H.; Li, J.; Wang, Z. L.; Liu, J. P.; Sun, S. H. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004, 4, 187–190.

35

Gu, H.; Ho, P. L.; Tsang, K. W. T.; Yu, C. W.; Xu, B. Using biofunctional magnetic nanoparticles to capture gram-negative bacteria at an ultra-low concentration. Chem. Commun. 2003, 1966–1967.

36

Gu, H.; Ho, P. L.; Tsang, K. W. T.; Wang, L.; Xu, B. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 2003, 125, 15702–15703.

37

Xu, C. J.; Xu, K. M.; Gu, H. W.; Zhong, X. F.; Guo, Z. H.; Zheng, R. K.; Zhang, X. X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 2004, 126, 3392–3393.

38

Shevchenko, E. V.; Ringler, M.; Schwemer, A.; Talapin, D. V.; Klar, T. A.; Rogach, A. L.; Feldmann, J.; Alivisatos, A. P. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J. Am. Chem. Soc. 2008, 130, 3274–3275.

39

Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.

40

Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O'Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637.

41

Choi, J. S.; Jun, Y. W.; Yeon, S. I.; Kim, H. C.; Shin, J. S.; Cheon, J. Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 2006, 128, 15982–15983.

42

Wang, C.; Hou, Y. L.; Kim, J. M.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. Int. Ed. 2007, 46, 6333–6335.

43

Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

44

Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044.

45

Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.

46

Menagen, G.; Mocatta, D.; Salant, A.; Popov, I.; Dorfs, D.; Banin, U. Selective gold growth on CdSe seeded CdS nanorods. Chem. Mater. 2008, 20, 6900–6902.

47

Wang, Y.; Toshima, N. Preparation of Pd–Pt bimetallic colloids with controllable core/shell structures. J. Phys. Chem. B 1997, 101, 5301–5306.

48

Palermo, A.; Williams, F. J.; Lambert, R. M. In situ control of the composition and performance of a bimetallic alloy catalyst: The selective hydrogenation of acetylene over Pt/Pb. J. Phys. Chem. B 2002, 106, 10215–10219.

49

Oudenhuijzen, M. K.; Bitter, J. H.; Koningsberger, D. C. The nature of the Pt–H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt–H antibonding shape resonance and Pt–H EXAFS. J. Phys. Chem. B 2001, 105, 4616–4622.

50

Hickey, B. J.; Howson, M. A.; Greig, D.; Wiser, N. Enhanced magnetic anisotropy energy density for superparamagnetic particles of cobalt. Phys. Rev. B 1996, 53, 32–33.

51

Yang, H. Z.; Zhang, J.; Sun, K.; Zou, S. Z.; Fang, J. Y. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chem. Int. Ed. 2010, 49, 6848–6851.

52

Xu, Z. C.; Carlton, C. E.; Allard, L. F.; Shao-Horn, Y.; Hamad-Schifferli, K. Direct colloidal route for Pt-covered AuPt bimetallic nanoparticles. J. Phys. Chem. Lett. 2010, 1, 2514–2518.

53

Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum–copper nanocubes. Angew. Chem. Int. Ed. 2009, 48, 4217–4221.

54

Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals—The case of Pt–Co and –Ni alloy electro-catalysts for DMFCs: A short review. Appl. Catal. B-Environ. 2006, 63, 137–149.

55

Tong, Y. Y.; Kim, H. S.; Babu, P. K.; Waszczuk, P.; Wieckowski, A.; Oldfield, E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J. Am. Chem. Soc. 2002, 124, 468–473.

56

Watanabe, M.; Tsurumi, K.; Mizukami, T.; Nakamura, T.; Stonehart, P. Activity and stability of ordered and disordered Co–Pt alloys for phosphoric-acid fuel-cells. J. Electrochem. Soc. 1994, 141, 2659–2668.

57

Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum–gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

58

He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G.; Feng, L. L.; Hu, X. A.; Zbou, W. Y.; Me, S. S. Pt-guided formation of Pt–Ag alloy nanoislands on Au nanorods and improved methanol electro-oxidation. J. Phys. Chem. C 2009, 113, 10505–10510.

59

Jia, J. B.; Cao, L. Y.; Wang, Z. H. Platinum-coated gold nanoporous film surface: Electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Langmuir 2008, 24, 5932–5936.

60

Jena, B. K.; Raj, C. R. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 2007, 23, 4064–4070.

File
nr-4-9-836_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2011
Accepted: 14 April 2011
Published: 16 May 2011
Issue date: September 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (NSFC) (Nos. 90922033 and 20941003), the National Basic Research Program of China (No. 2010CB934601), the Doctoral Program (No. 20090001120010), and New Century Talents of the Education Ministry of China (No. NCET-09-0177), the Yok Ying Tung Foundation (No. 122043), the Beijing Outstanding Talent Program (No. 2009D013001000013), and New Star Program of Beijing Committee of Science and Technology (BCST) (No. 2008B02).

Return