Journal Home > Volume 4 , Issue 9

The procedure reported here allows for the size and shape control of CdTe nanowires by means of colloidal chemistry. Thus, ultrathin, straight, saw-tooth-like and one-sided branched nanowires with zinc blende structures could be synthesized. Their formation does not require any catalyst and is most likely due to the oriented attachment of nanoparticles formed in the beginning of the reaction. The use of oleylamine as a solvent turned out to be crucial in order to achieve CdTe nanowires. The reaction between oleic acid and oleylamine in the presence of CdO proved to be essential, not only to activate the Cd precursor but also to provide reaction conditions facilitating nanowire formation by oriented attachment.


menu
Abstract
Full text
Outline
About this article

Catalyst-Free Synthesis and Shape Control of CdTe Nanowires

Show Author's information Xiaoping JinMarta KruszynskaJürgen ParisiJoanna Kolny-Olesiak( )
University of Oldenburg, Department of Physics Energy and Semiconductor Research LaboratoryCarl-von-Ossietzky-Str 9-11, 26129 Oldenburg, Germany

Abstract

The procedure reported here allows for the size and shape control of CdTe nanowires by means of colloidal chemistry. Thus, ultrathin, straight, saw-tooth-like and one-sided branched nanowires with zinc blende structures could be synthesized. Their formation does not require any catalyst and is most likely due to the oriented attachment of nanoparticles formed in the beginning of the reaction. The use of oleylamine as a solvent turned out to be crucial in order to achieve CdTe nanowires. The reaction between oleic acid and oleylamine in the presence of CdO proved to be essential, not only to activate the Cd precursor but also to provide reaction conditions facilitating nanowire formation by oriented attachment.

Keywords: oriented attachment, Nanowires, shape control, CdTe, amine activation

References(37)

1

Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.

2

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 2000, 30, 545–610.

3

Tang, Z.; Kotov, N. A. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 2005, 17, 951–962.

4

Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

5

Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 2002, 295, 2425–2427.

6

Jayadevan, K. P.; Tseng, T. Y. One-dimensional semiconductor nanostructures as absorber layers in solar cells. J. Nanosci. Nanotechnol. 2005, 5, 1768–1784.

7

Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 2001, 105, 2260–2263.

8

Rogach, A. L. Nanocrystalline CdTe and CdTe(S) particles: Wet chemical preparation size-dependent optical properties and perspectives of optoelectronic applications. Mater. Sci. Eng. B 2000, 69, 435–440.

9

Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.

10

Yu, W. W.; Wang, Y. A.; Peng, X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15, 4300–4308.

11

Kolny-Olesiak, J.; Kloper, V.; Osovsky, R.; Sashchiuk, A.; Lifshitz, E Synthesis and characterization of brightly photoluminescent CdTe nanocrystals. Surf. Sci. 2007, 601, 2667–2670.

12

Kloper, V.; Osovsky, R.; Kolny-Olesiak, J.; Sashchiuk, A.; Lifshitz, E. The growth of colloidal cadmium telluride nanocrystal quantum dots in the presence of Cd0 nanoparticles. J. Phys. Chem. C 2007, 111, 10336–10341.

13

Shieh, F.; Saunders, A. E.; Korgel, B. A. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 2005, 109, 8538–8542.

14

Li, J.; Hong, X.; Li, D.; Zhao, K.; Wang, L.; Wang, H.; Du, Z.; Li, J.; Bai, Y.; Li, T. Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods. Chem. Comm. 2004, 15, 1740–1741.

15

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

16

Cho, J. W.; Kim, H. S.; Kim, Y. J.; Jang, S. Y.; Park, J.; Kim, J. G.; Kim, Y. J.; Cha, E. H. Phase-tuned tetrapod-shaped CdTe nanocrystals by ligand effect. Chem. Mater. 2008, 20, 5600–5609.

17

Niu, H.; Gao, M. Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer. Angew. Chem. Int. Ed. 2006, 45, 6462–6466.

18

Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

19

Sun, J.; Wang, L. W.; Buhro, W. E. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots. J. Am. Chem. Soc. 2008, 130, 7997–8005.

20

Kuno, M.; Ahmad, O.; Protasenko, V.; Bacinello, D.; Kosel, T. H. Solution-based straight and branched CdTe nanowires. Chem. Mater 2006, 18, 5722–5732.

21

Wuister, S. F.; Swart, I.; van Driel, F.; Hickey, S. G.; de Mello Donegá, C. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003, 3, 503–507.

22

Kuno, M. An overview of solution-based semiconductor nanowires: Synthesis and optical studies. Phys. Chem. Chem. Phys. 2008, 10, 620–639.

23

Lilly, G. D.; Lee, J.; Sun, K.; Tang, Z.; Kim, K. S.; Kotov, N. A. Media effect on CdTe nanowire growth: Mechanism of self-assembly, Ostwald ripening, and control of NW geometry. J. Phys. Chem. C 2008, 112, 370–377.

24

Sinyagin, A. Y.; Belov, A.; Tang, Z.; Kotov, N. A. Monte carlo computer simulation of chain formation from nanoparticles. J. Phys. Chem. B 2006, 110, 7500–7507.

25

Li, L. S.; Pradhan, N.; Wang, Y.; Peng, X. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

26

Vossmeyer, T.; Reck, G.; Katsikas, L.; Haupt, E. T. K.; Schulz, B.; Weller, H. A' double-diamond superlattice' built up of Cd17S4(SCH2CH2OH)26 clusters. Science 1995, 267, 1476–1479.

27

Rockenberger, J.; Troger, L.; Rogach, A. L.; Tischer, M.; Grundmann, M.; Eychmuller, A.; Weller, H. The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. J. Chem. Phys. 1998, 108, 7807–7815.

28

Zheng, N.; Bu, X.; Lu, H.; Chen, L.; Feng, P. One-dimensional assembly of chalcogenide nanoclusters with bifunctional covalent linkers. J. Am. Chem. Soc 2005, 127, 14990–14991.

29

Herron, N.; Calabrese, J. C.; Farneth, W. E.; Wang, Y. Crystal structure and optical properties of Cd32S14(SC6H5)36·DMF4, a cluster with a 15 Angstrom CdS core. Science 1993, 259, 1426–1428.

30

Behrens, S.; Bettenhausen, M.; Eichhofer, A.; Fenske, D. Synthesis and crystal structure of [Cd10Se4(SePh)12(PPh3)4] and [Cd16(SePh)32(PPh3)2]. Angew. Chem. Int. Ed. 1997, 36, 2797–2799.

31

Wuister, S. F.; de Mello Donegá, C.; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B. 2004, 108, 17393–17397.

32

Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

33

Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

34

Zhang, Q.; Liu, S. J.; Yu, S. H. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mat. Chem. 2009, 19, 191–207.

35

Zhang, Z.; Tang, Z.; Kotov, N. A.; Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 2007, 7, 1670–1675.

36

Pradhan, N.; Xu, H.; Peng, X. Colloidal CdSe quantum wires by oriented attachment. Nano Lett. 2006, 6, 720–724.

37

Barnard, A. S.; Xu, H.; Li, X.; Pradhan, N.; Peng, X. Modelling the formation of high aspect CdSe quantum wires: Axial-growth versus oriented-attachment mechanisms. Nanotechnology 2006, 17, 5707–5714.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 December 2010
Revised: 15 March 2011
Accepted: 13 April 2011
Published: 07 May 2011
Issue date: September 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

We would like to thank Erhard Rhiel and Heike Oetting (University of Oldenburg) for assistance in obtaining TEM images and Andreas Kornowski (University of Hamburg) for taking the HRTEM images. We gratefully acknowledge funding from the EWE Research Group "Thin Film Photovoltaics" of EWE AG, Oldenburg. Furthermore, this work was partly supported by the Federal Ministry of Education and Research (BMBF, project No. 03SF0338C).

Return