Journal Home > Volume 4 , Issue 9

We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transparency in the visible spectral range with a transmittance of ~90% for a NW density of ~20−25 per 10 μm. In addition, polarization-dependent measurements revealed a variation in transmittance in the range of 80%−95% depending on the angle between the polarization of incident light and the NW axis. Using the SiNWs, we demonstrated that transparent transistors exhibit good optical transparency (greater than 80%) and showed typical p-type SiNW transistor characteristics.


menu
Abstract
Full text
Outline
About this article

Optical Properties of Laterally Aligned Si Nanowires for Transparent Electronics Applications

Show Author's information Dong Hyun Lee1Jaeseok Yi1Won Woo Lee1Ungyu Paik1,2( )John A. Rogers3( )Won II Park1( )
Division of Materials Science and Engineering Hanyang UniversitySeoul 133-791 Korea
Department of Energy Engineering Hanyang UniversitySeoul 133-791 Korea
Department of Materials Science and Engineering, Department of Chemistry, Department of Mechanical Science and Engineering, Beckman Institute, and Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA

Abstract

We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transparency in the visible spectral range with a transmittance of ~90% for a NW density of ~20−25 per 10 μm. In addition, polarization-dependent measurements revealed a variation in transmittance in the range of 80%−95% depending on the angle between the polarization of incident light and the NW axis. Using the SiNWs, we demonstrated that transparent transistors exhibit good optical transparency (greater than 80%) and showed typical p-type SiNW transistor characteristics.

Keywords: optical properties, Si nanowire, transparent thin film transistor, finite-difference time-domain (FDTD) modeling

References(18)

1

Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.

2

Someya, T. Optics: Electronic eyeballs. Nature 2008, 454, 703–704.

3

Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

4

Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y.; Wang, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.

5

Gorrn, P.; Sander, M.; Meyer, J.; Kroger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Riedl, T. Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 2006, 18, 738–741.

6

Kim, H.; Horwiz, J. S.; Kushto, G. P.; Kafafi, Z. H.; Chrisey, D. B. Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Appl. Phys. Lett. 2001, 79, 284–286.

7

Izaki, M.; Omi, T. Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 1996, 68, 2439–2440.

8

Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P.; Zhou, C.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.

9

Dattoli, E. N.; Wan, Q.; Guo, W.; Chen, Y.; Pan, X.; Lu, W. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 2007, 7, 2463–2469.

10

Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Gruner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.

11

Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P.; Badmaev, A.; De Arco Gomez, L.; Shen, G.; Zhou, C. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2008, 3, 73–79.

12

Patolsky, F.; Zheng, G.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.

13

Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

14

Oubre, C.; Nordlander P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 2004, 108, 17740–17747.

15

Javey, A.; Nam, S. W.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.

16

Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P. Electrodynamics of Continuous Media; Pergamon: Oxford, England, 1984.

DOI
17

Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photo detection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

18

Pangal, K.; Sturm, J. C.; Wagner, S. Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon. Appl. Phys. Lett. 1999, 75, 2091–2093.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 March 2011
Revised: 12 April 2011
Accepted: 12 April 2011
Published: 14 June 2011
Issue date: September 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (No. KRF-2007-331-D00194) and by the National Research Foundation of Korea (NRF) through a Grant (No. K2070400000307, Global Research Laboratory (GRL) Program) provided by the Korean Ministry of Education, Science and Technology (MEST) in 2009.

Return