Journal Home > Volume 4 , Issue 8

Single-walled carbon nanotubes (SWCNTs) with specific diameters are required for various applications particularly in electronics and photonics, since the diameter is an essential characteristic determining their electronic and optical properties. In this work, the selective growth of SWCNTs with a certain mean diameter is achieved by the addition of appropriate amounts of CO2 mixed with the carbon source (CO) into the aerosol (floating catalyst) chemical vapor deposition reactor. The noticeable shift of the peaks in the absorption spectra reveals that the mean diameters of the as-deposited SWCNTs are efficiently altered from 1.2 to 1.9 nm with increasing CO2 concentration. It is believed that CO2 acts as an etching agent and can selectively etch small diameter tubes due to their highly curved carbon surfaces. Polymer-free as-deposited SWCNT films with the desired diameters are used as saturable absorbers after stamping onto a highly reflecting Ag-mirror using a simple dry-transfer technique. Sub-picosecond mode-locked fiber laser operations at ~1.56 μm and ~2 μm are demonstrated, showing improvements in the performance after the optimization of the SWCNT properties.


menu
Abstract
Full text
Outline
About this article

Tailoring the Diameter of Single-Walled Carbon Nanotubes for Optical Applications

Show Author's information Ying Tian1Marina Y. Timmermans1Samuli Kivistö2Albert G. Nasibulin1( )Zhen Zhu1Hua Jiang1Oleg G. Okhotnikov2Esko I. Kauppinen1( )
NanoMaterials Group, Department of Applied Physics and Center for New Materials Aalto UniversityEspoo 00076 Finland
Optoelectronics Research Centre Tampere University of Technology, P. O. Box 692Tampere 33101 Finland

Abstract

Single-walled carbon nanotubes (SWCNTs) with specific diameters are required for various applications particularly in electronics and photonics, since the diameter is an essential characteristic determining their electronic and optical properties. In this work, the selective growth of SWCNTs with a certain mean diameter is achieved by the addition of appropriate amounts of CO2 mixed with the carbon source (CO) into the aerosol (floating catalyst) chemical vapor deposition reactor. The noticeable shift of the peaks in the absorption spectra reveals that the mean diameters of the as-deposited SWCNTs are efficiently altered from 1.2 to 1.9 nm with increasing CO2 concentration. It is believed that CO2 acts as an etching agent and can selectively etch small diameter tubes due to their highly curved carbon surfaces. Polymer-free as-deposited SWCNT films with the desired diameters are used as saturable absorbers after stamping onto a highly reflecting Ag-mirror using a simple dry-transfer technique. Sub-picosecond mode-locked fiber laser operations at ~1.56 μm and ~2 μm are demonstrated, showing improvements in the performance after the optimization of the SWCNT properties.

Keywords: Single-walled carbon nanotube, diameter-controlled synthesis, optical absorption spectroscopy, saturable absorption, mode-locked laser

References(21)

1

Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes Synthesis, Structures, and Applications. Springer: Berlin, New York, 2001.

DOI
2

Sato, Y.; Yanagi, K.; Miyata, Y.; Suenaga, K.; Kataura, H.; Iijima, S. Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett. 2008, 8, 3151–3154.

3

Fleurier, R.; Lauret, J. -S.; Lopez, U.; Loiseau, A. Transmission electron microscopy and UV–vis–IR spectroscopy analysis of the diameter sorting of carbon nanotubes by gradient density ultracentrifugation. Adv. Funct. Mater. 2009, 19, 2219–2223.

4

Wang, F; Rozhin, A. G.; Scardaci, V; Sun, Z; Hennrich, F; White, I. H.; Milne, W. I.; Ferrari, A. C. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 2008, 3, 738–742.

5

Kivistö, S.; Hakulinen, T.; Kaskela, A.; Aitchison, B.; Brown, D. P.; Nasibulin, A. G.; Kauppinen, E. I.; Härkönen, A.; Okhotnikov, O. G. Carbon nanotube films for ultrafast broadband technology. Opt. Express 2009, 17, 2358–2363.

6

Solodyankin, M. A.; Obraztsova, E. D.; Lobach, A. S.; Chernov, A. I.; Tausenev, A. V.; Konov, V. I.; Dianov, E. M. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 2008, 33, 1336–1338.

7

Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A.; Kauppinen, E. I. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.

8

Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E. I. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem. Eng. Sci. 2006, 61, 4393–4402.

9

Moisala, A.; Nasibulin, A. G.; Shandakov, S. D.; Jiang, H.; Kauppinen, E. I. On-line detection of single-walled carbon nanotube formation during aerosol synthesis methods. Carbon 2005, 43, 2066–2074.

10

Dresselhaus, M. S.; Jorio, A. Raman Spectroscopy of carbon nanotubes in 1997 and 2007. J. Phys. Chem. C 2007, 111, 17887–17893.

11

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

12

Araujo, P. T.; Doorn, S. K.; Kilina, S.; Tretiak, S.; Einarsson, E.; Maruyama, S.; Chacham, H.; Pimenta, M. A.; Jorio, A. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 2007, 98, 067401.

13

Liu, X.; Pichler, T.; Knupfer, M.; Golden, M. S.; Fink, J.; Kataura, H.; Achiba, Y. Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response. Phys. Rev. B 2002, 66, 045411.

14

Tian, Y.; Jiang, H.; v. Pfaler, J.; Zhu, Z.; Nasibulin, A. G.; Nikitin, T.; Aitchison, B.; Khriachtchev, L.; Brown, D. P.; Kauppinen, E. I. Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 2010, 1, 1143–1148.

15

Anisimov, A. S.; Nasibulin, A. G.; Jiang, H.; Launois, P.; Cambedouzou, J.; Shandakov, S. D.; Kauppinen, E. I. Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon 2010, 48, 380–388.

16

Nasibulin, A. G.; Shandakov, S. D. Aerosol synthesis of single-walled carbon nanotubes. In Aerosols: Science and Technology; Agranovski. I., Ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 65–89.

DOI
17

Maruyama, S.; Murakami, Y.; Shibuta, Y.; Miyauchi, Y.; Chiashi, S. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations. J. Nanosci. Nanotechnol. 2004, 4, 360–367.

18

Ding, F.; Bolton, K.; Rosen, A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 2004, 108, 17369–17377.

19

Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

20

Helveg, S.; Lopez-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Norskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

21

Mudimela, P. R.; Nasibulin, A. G.; Jiang, H.; Susi, T.; Chassaing, D.; Kauppinen, E. I. Incremental variation in the number of carbon nanotube walls with growth temperature. J. Phys. Chem. C 2009, 113, 2212–2218.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 December 2010
Revised: 20 March 2011
Accepted: 11 April 2011
Published: 07 May 2011
Issue date: August 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was financially supported by the Academy of Finland (Project Nos. 128495 and 128445), TEKES (GROCO and NaBuFi projects) and the CNB-E project in the Aalto University Multidisciplinary Institute of Digitalization and Energy (MIDE) programme.

Return