Journal Home > Volume 4 , Issue 8

Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets in order to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high energy and power density operating in aqueous solutions at a voltage of ~1.5 V. The asymmetrical supercapacitor exhibits significantly higher energy densities than symmetrical RuO2–RuO2 supercapacitors or asymmetrical supercapacitors based on either RuO2–carbon or Ni(OH)2–carbon electrode pairs. A high energy density of ~48 W·h/kg at a power density of ~0.23 kW/kg, and a high power density of ~21 kW/kg at an energy density of ~14 W·h/kg have been achieved with our Ni(OH)2/graphene and RuO2/graphene asymmetrical supercapacitor. Thus, pairing up metal-oxide/graphene and metal-hydroxide/graphene hybrid materials for asymmetrical supercapacitors represents a new approach to high performance energy storage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials

Show Author's information Hailiang WangYongye LiangTissaphern MirfakhraiZhuo ChenHernan Sanchez CasalongueHongjie Dai( )
Department of Chemistry Stanford UniversityStanford, CA 94305 USA

Abstract

Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets in order to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high energy and power density operating in aqueous solutions at a voltage of ~1.5 V. The asymmetrical supercapacitor exhibits significantly higher energy densities than symmetrical RuO2–RuO2 supercapacitors or asymmetrical supercapacitors based on either RuO2–carbon or Ni(OH)2–carbon electrode pairs. A high energy density of ~48 W·h/kg at a power density of ~0.23 kW/kg, and a high power density of ~21 kW/kg at an energy density of ~14 W·h/kg have been achieved with our Ni(OH)2/graphene and RuO2/graphene asymmetrical supercapacitor. Thus, pairing up metal-oxide/graphene and metal-hydroxide/graphene hybrid materials for asymmetrical supercapacitors represents a new approach to high performance energy storage.

Keywords: graphene, energy storage, Ni(OH)2, Asymmetrical supercapacitor, RuO2, hybrid nanomaterials

References(36)

1

Burke, A. Ultracapacitors: How, why and where is the technology? J. Power Sources 2000, 91, 37–50.

2

Kötz, R.; Carlen, M. Principles and applications of electro-chemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.

3

Winter, M.; Brodd, R. What are batteries, fuel cells, and supercapacitors? J. Chem. Rev. 2004, 104, 4245–4269.

4

Inagaki, M.; Konno, H.; Tanaike, O. Carbon materials for electrochemical capacitors. J. Power Sources 2010, 195, 7880–7903.

5

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. T.; van Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

6

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

7

Wang, Y.; Yu, L.; Xia, Y. Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2/carbon nanotube composites and activated carbon. J. Electrochem. Soc. 2006, 153, A743–A748.

8

Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027.

9

Wu, Z.; Ren, W.; Wang, D.; Li, F.; Liu, B.; Cheng, H. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835–5842.

10

Li, J.; Gao, F. Analysis of electrodes matching for asymmetric electrochemical capacitor. J. Power Sources 2009, 194, 1184–1193.

11

Lang, J.; Kong, L.; Liu, M.; Luo, Y.; Kang, L. Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J. Solid State Electrochem. 2010, 14, 1533–1539.

12

Wang, H.; Gao, Q.; Hu, J. Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. J. Power Sources 2010, 195, 3017–3024.

13

Kong, L.; Liu, M.; Lang, J.; Luo, Y.; Kang, L. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J. Electrochem. Soc. 2009, 156, A1000–A1004.

14

Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.

15

Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 2010, 132, 12556–12558.

16

Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

17

Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107.

18

An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K. M.; Washington, M.; Nayak, S. K.; Talapatra, S.; Kar, S. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 2010, 10, 4295–4301.

19

Wang, H.; Cui, L.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

20

Yang, S.; Cui, G.; Pang, S.; Cao, Q.; Kolb, U.; Feng, X.; Maier, J.; Mullen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 236–239.

21

Wu, Z.; Wang, D.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.

22

Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

23

Wang, H.; Robinson, J. T.; Diankov, G.; Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.

24

Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705.

25

Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

26

Lin, Y.; Lee, K.; Chen, K.; Huang, Y. Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes. Appl. Surf. Sci. 2009, 256, 1042–1045.

27

Wang, Y.; Wang, Z.; Xia, Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim. Acta 2005, 50, 5641–5646.

28

Liu, Y.; Zhao, W.; Zhang, X. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors. Electrochim. Acta 2008, 53, 3296–3304.

29

Bi, R.; Wu, X.; Cao, F.; Jiang, L.; Guo, Y.; Wan, L. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451.

30

Min, M.; Machida, K.; Jang, J. H.; Naoi, K. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 2006, 153, A334–A338.

31

Liu, X.; Pickup, P. G. Ru oxide supercapacitors with high loadings and high power and energy densities. J. Power Sources 2008, 176, 410–416.

32

Lee, J.; Pathan, H. M.; Jung, K.; Joo, O. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J. Power Sources 2006, 159, 1527–1531.

33

Chen, P.; Chen, H.; Qiu, J.; Zhou, C. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.

34

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

35

Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

36

Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

File
nr-4-8-729_ESM.pdf (875.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2011
Revised: 12 March 2011
Accepted: 13 March 2011
Published: 12 April 2011
Issue date: August 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was supported partially by ONR and a Stanford Graduate Fellowship.

Return