Journal Home > Volume 4 , Issue 8

High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using density gradient ultracentrifugation. Size and dimension analysis by transmission electron microscopy (TEM) and absorption spectroscopy revealed that the Au NRs were separated mainly as a function of their aspect ratio. The surface-enhanced Raman scattering (SERS) activity of Au NRs with lower aspect ratio is notably stronger than that of NRs with higher aspect ratio under 633 nm laser excitation, due to the size-dependent absorption of the longitudinal plasmon band. The separation approach provides a method to improve the quality of NRs produced by large scale synthetic methods.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Separation of Gold Nanorods Using Density Gradient Ultracentrifugation

Show Author's information Shuai Li§Zheng Chang§Junfeng Liu( )Lu BaiLiang LuoXiaoming Sun( )
State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical TechnologyBeijing 100029 China

§These authors contributed equally to this work.

Abstract

High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using density gradient ultracentrifugation. Size and dimension analysis by transmission electron microscopy (TEM) and absorption spectroscopy revealed that the Au NRs were separated mainly as a function of their aspect ratio. The surface-enhanced Raman scattering (SERS) activity of Au NRs with lower aspect ratio is notably stronger than that of NRs with higher aspect ratio under 633 nm laser excitation, due to the size-dependent absorption of the longitudinal plasmon band. The separation approach provides a method to improve the quality of NRs produced by large scale synthetic methods.

Keywords: surface-enhanced Raman scattering (SERS), separation, Au nanorods, aspect ratio, density gradient

References(23)

1

Hata, H.; Kubo, S.; Kobayashi, Y.; Mallouk, T. E. Intercalation of well-dispersed gold nanoparticles into layered oxide nanosheets through intercalation of a polyamine. J. Am. Chem. Soc. 2007, 129, 3064–3065.

2

Sharma, V.; Park, K.; Srinivasarao, M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mat. Sci. Eng. R. 2009, 65, 1–38.

3

Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.

4

Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

5

Kim, F.; Song, J. H.; Yang, P. D. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124, 14316–14317.

6

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

7

Yao, H.; Momozawa, O.; Hamatani, T.; Kimura, K. Stepwise size-selective extraction of carboxylate-modified gold nanoparticles from an aqueous suspension into toluene with tetraoctylammonium cations. Chem. Mater. 2001, 13, 4692–4697.

8

Wei, J. T.; Liu, F. K.; Wang, C. R. C. Shape separation of nanometer gold particles by size-exclusion chromatography. Anal. Chem. 1999, 71, 2085–2091.

9

Jana, N. R. Nanorod shape separation using surfactant assisted self-assembly. Chem. Commun. 2003, 1950–1951.

10

Park, K.; Koerner, H.; Vaia, R. A. Depletion-induced shape and size selection of gold nanoparticles. Nano Lett. 2010, 10, 1433–1439.

11

Wang, X.; Li, Y. D. Monodisperse nanocrystals: General synthesis, assembly, and their applications. Chem. Commun. 2007, 2901–2910.

12

Novak, J. P.; Nickerson, C.; Franzen, S.; Feldheim, D. L. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal. Chem. 2001, 73, 5758–5761.

13

Sharma, V.; Park, K.; Srinivasarao, M. Shape separation of gold nanorods using centrifugation. Proc. Natl. Acad. Sci. USA 2009, 106, 4981–4985.

14

Sun, X. M.; Tabakman, S. M.; Seo, W. S.; Zhang, L.; Zhang, J. Y.; Sherlock, S.; Bai, L.; Dai, H. J. Separation of nano-particles in a density gradient: FeCo@C and gold nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 939–942.

15

Bai, L.; Ma, X. J.; Liu, J. F.; Sun, X. M.; Zhao, D. Y.; Evans, D. G. Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 2010, 132, 2333–2337.

16

Sun, X. M.; Luo, D. C.; Liu, J. F.; Evans, D. G. Mono-disperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 2010, 4, 3381–3389.

17

Sun, X. M.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y. R.; Li, X. L.; Dai, H. J. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Am. Chem. Soc. 2008, 130, 6551–6555.

18

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

19

Zhang, J. T.; Li, X. L.; Sun, X. M.; Li, Y. D. Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 2005, 109, 12544–12548.

20

Yang, K. H.; Liu, Y. C.; Yu, C. C. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates. Langmuir 2010, 26, 11512–11517.

21

Chen, L. M.; Luo, L. B.; Chen, Z. H.; Zhang, M. L.; Zapien, J. A.; Lee, C. S.; Lee, S. T. ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J. Phys. Chem. C 2010, 114, 93–100.

22

Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys. 2006, 8, 165–170.

23

Ye, W. C.; Yan, J. F.; Ye, Q.; Zhou, F. Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: Growth and their multiple applications. J. Phys. Chem. C 2010, 114, 15617–15624.

File
nr-4-8-723_ESM.pdf (664.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 February 2011
Revised: 06 March 2011
Accepted: 10 March 2011
Published: 02 April 2011
Issue date: August 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC), Beijing Natural Science Foundation (No. 2102033), the Program for New Century Excellent Talents in Universities, and the 973 Program (No. 2009CB939801).

Return