Journal Home > Volume 4 , Issue 7

Previously reported examples of electrochemical pseudocapacitors based on cheap metal oxides have suffered from the need to compromise between specific capacitance, rate capacitance, and reversibility. Here we show that NiO nanorod arrays on Ni foam have a combination of ultrahigh specific capacitance (2018 F/g at 2.27 A/g), high power density (1536 F/g at 22.7 A/g), and good cycling stability (only 8% of capacitance was lost in the first 100 cycles with no further change in the subsequent 400 cycles). This resulted in an improvement in the reversible capacitance record for NiO by 50% or more, reaching 80% of the theoretical value, and demonstrated that a three-dimensional regular porous array structure can afford all of these virtues in a supercapacitor. The excellent performance can be attributed to the slim (< 20 nm) rod morphology, high crystallinity, regularly aligned array structure and strong bonding of the nanorods to the metallic Ni substrate, as revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stable Ultrahigh Specific Capacitance of NiO Nanorod Arrays

Show Author's information Zhiyi LuZheng ChangJunfeng LiuXiaoming Sun( )
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyP. O. Box 98Beijing100029China

Abstract

Previously reported examples of electrochemical pseudocapacitors based on cheap metal oxides have suffered from the need to compromise between specific capacitance, rate capacitance, and reversibility. Here we show that NiO nanorod arrays on Ni foam have a combination of ultrahigh specific capacitance (2018 F/g at 2.27 A/g), high power density (1536 F/g at 22.7 A/g), and good cycling stability (only 8% of capacitance was lost in the first 100 cycles with no further change in the subsequent 400 cycles). This resulted in an improvement in the reversible capacitance record for NiO by 50% or more, reaching 80% of the theoretical value, and demonstrated that a three-dimensional regular porous array structure can afford all of these virtues in a supercapacitor. The excellent performance can be attributed to the slim (< 20 nm) rod morphology, high crystallinity, regularly aligned array structure and strong bonding of the nanorods to the metallic Ni substrate, as revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD).

Keywords: cycling stability, NiO, nanorod, Pseudocapacitance, array

References(32)

1

Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S. O.; Tolbert, S. H.; Smarsly, B. M.; Dunn, B.; Brezesinski, T. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 2010, 132, 6982–6990.

2

Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27.

3

Dillon, A. C. Carbon nanotubes for photoconversion and electrical energy storage. Chem. Rev. 2010, 110, 6856–6872.

4

Zhang, H.; Cao, G.; Yang, Y. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2009, 2, 932–943.

5

Liu, R.; Duay, J.; Lee, S. B. Redox exchange induced MnO2 nanoparticle enrichment in poly(3, 4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 2010, 4, 4299–4307.

6

Xiao, X.; Wang, L.; Wang, D.; He, X.; Peng, Q.; Li, Y. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

7

Liu, C.; Li, F.; Ma, L.; Cheng, H. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

8

Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695.

9

Hsieh, Y.; Lee, K.; Lin, Y.; Wu, N.; Donne, S. Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor. J. Power Sources 2008, 177, 660–664.

10

Cheng, H.; Lu, Z.; Deng, J.; Chung, C.; Zhang, K.; Li, Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

11

Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 4213–4215.

12

Wang, D.; Ni, W.; Pang, H.; Lu, Q.; Huang, Z.; Zhao, J. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim. Acta 2010, 55, 6830–6835.

13

Liu, K.; Anderson, M. Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc. 1996, 143, 124–130.

14

Yuan, C. Z.; Zhang, X. G.; Su, L. H.; Gao, B.; Shen, L. F. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772–5777.

15

Xing, W.; Li, F.; Yan, Z. F.; Lu, G. Q. Synthesis and electrochemical properties of mesoporous nickel oxide. J. Power Sources 2004, 134, 324–330.

16

Liu, X. M.; Zhang, X. G.; Fu, S. Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater. Res. Bull. 2006, 41, 620–627.

17

Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y. H.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652.

18

Wang, H. L.; Robinson, J.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.

19

Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electro-chemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

20

Yang, G.; Xu, C.; Li, H. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 6537–6539.

21

Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 2010, 22, 347–351.

22

Fu, G. R.; Hu, Z. A.; Xie, L. J.; Jin, X. Q.; Xie, Y. L.; Wang, Y. X.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. Electro-deposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci. 2009, 4, 1052–1062.

23

Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline–amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

24

Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Single nanowire electrochemical devices. Nano Lett. 2010, 10, 4273–4278.

25

Chan, C.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.; Huggins, R.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2007, 3, 31–35.

26

Kim, J. H.; Zhu, K.; Yan, Y. F.; Perkins, C. L.; Frank, A. J. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett. 2010, 10, 4099–4104.

27

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

28

Yan, J. A.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010, 4, 4247–4255.

29

Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668.

30

Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889–3896.

31

Yuan, Y.; Xia, X.; Wu, J.; Yang, J.; Chen, Y.; Guo, S. Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochim. Acta 2010, 56, 2627–2632.

32

Wang, J.; Song, Y.; Li, Z.; Liu, Q.; Zhou, J.; Jing, X.; Zhang, M.; Jiang, Z. In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 2010, 24, 2878–2887.

File
nr-4-7-658_ESM.pdf (803.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 February 2011
Accepted: 04 March 2011
Published: 25 March 2011
Issue date: July 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

We thank Prof. Feng Wang and Dr. Chang Tan for help with electrochemical capacity testing. We also acknowledge the support of the National Natural Science Foundation of China, the 973 Program (No. 2011CBA00503), the Foundation for Authors of National Excellent Doctoral Dissertations of China, and Program for New Century Excellent Talents in University.

Return