Journal Home > Volume 4 , Issue 6

Field-effect transistors (FETs) have been fabricated using as-grown single-walled carbon nanotubes (SWNTs) for the channel as well as both source and drain electrodes. The underlying Si substrate was employed as the back-gate electrode. Fabrication consisted of patterned catalyst deposition by surface modification followed by dip-coating and synthesis of SWNTs by alcohol chemical vapor deposition (CVD). The electrodes and channel were grown simultaneously in one CVD process. The resulting FETs exhibited excellent performance, with an ION/IOFF ratio of 106 and a maximum ON-state current (ION) exceeding 13 μA. The large ION is attributed to SWNT bundles connecting the SWNT channel with the SWNT electrodes. Bundling creates a large contact area, which results in a small contact resistance despite the presence of Schottky barriers at metallic–semiconducting interfaces. The approach described here demonstrates a significant step toward the realization of metal-free electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile Fabrication of All-SWNT Field-Effect Transistors

Show Author's information Shinya Aikawa1,2Rong Xiang1,Erik Einarsson1,3Shohei Chiashi1Junichiro Shiomi1Eiichi Nishikawa2Shigeo Maruyama1( )
Department of Mechanical EngineeringThe University of TokyoBunkyo-kuTokyo113-8656Japan
Department of Electrical EngineeringTokyo University of Science1-3 KagurazakaShinjuku-kuTokyo162-8601Japan
Global Center of Excellence for Mechanical Systems InnovationThe University of Tokyo7-3-1 HongoBunkyo-kuTokyo113-8656Japan

Present address: HKUST–SYSU Joint Laboratory of Nano Materials and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

Field-effect transistors (FETs) have been fabricated using as-grown single-walled carbon nanotubes (SWNTs) for the channel as well as both source and drain electrodes. The underlying Si substrate was employed as the back-gate electrode. Fabrication consisted of patterned catalyst deposition by surface modification followed by dip-coating and synthesis of SWNTs by alcohol chemical vapor deposition (CVD). The electrodes and channel were grown simultaneously in one CVD process. The resulting FETs exhibited excellent performance, with an ION/IOFF ratio of 106 and a maximum ON-state current (ION) exceeding 13 μA. The large ION is attributed to SWNT bundles connecting the SWNT channel with the SWNT electrodes. Bundling creates a large contact area, which results in a small contact resistance despite the presence of Schottky barriers at metallic–semiconducting interfaces. The approach described here demonstrates a significant step toward the realization of metal-free electronics.

Keywords: field-effect transistor, Schottky barrier, Single-walled carbon nanotube, patterned synthesis, self-assembled monolayer, interfacial dipole

References(47)

1

Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

2

Martel, R.; Wong, H. S. P.; Chan, K.; Avouris, P. Carbon nanotube field effect transistors for logic applications. Proc. IEDM 2001, 159–161.

3

Appenzeller, J.; Lin, Y. M.; Knoch, J.; Avouris, Ph. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 2004, 93, 196805.

4

Lu, Y.; Bangsaruntip, S.; Wang, X.; Zhang, L.; Nishi, Y.; Dai, H. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high κ dielectrics for nanotube transistors with 60 mv/decade switching. J. Am. Chem. Soc. 2006, 128, 3518–3519.

5

Weitz, R. T.; Zschieschang, U.; Effenberger, F.; Klauk, H.; Burghard, M.; Kern, K. High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. Nano Lett. 2007, 7, 22–27.

6

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

7

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

8

Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

9

Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

10

Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.

11

Zhou, W.; Ding, L.; Yang, S.; Liu, J. Orthogonal orientation control of carbon nanotube growth. J. Am. Chem. Soc. 2010, 132, 336–341.

12

Cao, Q.; Zhu, Z. T.; Lemaitre, M. G.; Xia, M. G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.

13

Tsai, T. Y.; Lee, C. Y.; Tai, N. H.; Tuan, W. H. Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices. Appl. Phys. Lett. 2009, 95, 013107.

14

Buia, C.; Buldum, A.; Lu, J. P. Quantum interference effects in electronic transport through nanotube contacts. Phys. Rev. B 2003, 67, 113409.

15

Garrett, M. P.; Ivanov, I. N.; Gerhardt, R. A.; Puretzky, A. A.; Geohegan, D. B. Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy. Appl. Phys. Lett. 2010, 97, 163105.

16

Jang, S.; Jang, H.; Lee, Y.; Suh, D.; Baik, S.; Hong, B. H.; Ahn, J. H. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 2010, 21, 425201.

17

Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A.; Kauppinen, E. I. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.

18

Ren, Z. F.; Huang, Z. P.; Wang, D. Z.; Wen, J. G.; Xu, J. W.; Wang, J. H.; Calvet, L. E.; Chen, J.; Klemic, J. F.; Reed, M. A. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 1999, 75, 1086–1088.

19

Franklin, N. R.; Li, Y.; Chen, R. J.; Javey, A.; Dai, H. Patterned growth of single-walled carbon nanotubes on full 4-inch wafers. Appl. Phys. Lett. 2001, 79, 4571–4573.

20

Huang, S.; Dai, L.; Mau, A. W. H. Controlled fabrication of large-scale aligned carbon nanofiber/nanotube patterns by photolithography. Adv. Mater. 2002, 14, 1140–1143.

DOI
21

Wei, B. Q.; Vajtai, R.; Jung, Y.; Ward, J.; Zhang, R.; Ramanath, G.; Ajayan, P. M. Microfabrication technology: Organized assembly of carbon nanotubes. Nature 2002, 416, 495–496.

22

Xiang, R.; Wu, T.; Einarsson, E.; Suzuki, Y.; Murakami, Y.; Shiomi, J.; Maruyama, S. High-precision selective deposition of catalyst for facile localized growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 10344–10345.

23

Soh, H. T.; Quate, C. F.; Morpurgo, A. F.; Marcus, C. M.; Kong, J.; Dai, H. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 1999, 75, 627–629.

24

Ohno, Y.; Iwatsuki, S.; Hiraoka, T.; Okazaki, T.; Kishimoto, S.; Maezawa, K.; Shinohara, H.; Mizutani, T. Position-controlled carbon nanotube field-effect transistors fabricated by chemical vapor deposition using patterned metal catalyst. Jpn. J. Appl. Phys. 2003, 42, 4116–4119.

25

Murakami, Y.; Miyauchi, Y.; Chiashi, S.; Maruyama, S. Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem. Phys. Lett. 2003, 377, 49–54.

26

Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 2002, 360, 229–234.

27

Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M. H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298–303.

28

Maruyama, S.; Einarsson, E.; Murakami, Y.; Edamura, T. Growth process of vertically aligned single-walled carbon nanotubes. Chem. Phys. Lett. 2005, 403, 320–323.

29

Einarsson, E.; Kadowaki, M.; Ogura, K.; Okawa, J.; Xiang, R.; Zhang, Z.; Yamamoto, Y.; Ikuhara, Y.; Maruyama, S. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 6093–6098.

30

Kreupl, F.; Graham, A. P.; Duesberg, G. S.; Steinhögl, W.; Liebau, M.; Unger, E.; Hönlein, W. Carbon nanotubes in interconnect applications. Microelectron. Eng. 2002, 64, 399–408.

31

Nihei, M.; Kawabata, A.; Kondo, D.; Horibe, M.; Sato, S.; Awano, Y. Electrical properties of carbon nanotube bundles for future via interconnects. Jpn. J. Appl. Phys. 2005, 44, 1626–1628.

32

Wang, T.; Jeppson, K.; Olofsson, N.; Campbell, E. E. B.; Liu, J. Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology 2009, 20, 485203.

33

Fuhrer, M. S.; Nygård, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; McEuen, P. L. Crossed nanotube junctions. Science 2000, 288, 494–497.

34

Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.

35

Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

36

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

37

Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, Ph. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.

38

Wind, S. J.; Appenzeller, J.; Martel, R.; Derycke, V.; Avouris, Ph. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 2002, 80, 3817–3819.

39

Homma, Y.; Takagi, D.; Kobayashi, Y. Suspended architecture formation process of single-walled carbon nanotubes. Appl. Phys. Lett. 2006, 88, 023115.

40

Abrams, Z. R.; Hanein, Y. Tube-tube and tube-surface interactions in straight suspended carbon nanotube structures. J. Phys. Chem. B 2006, 110, 21419–21423.

41

Xiang, R.; Luo, G.; Yang, Z.; Zhang, Q.; Qian, W.; Wei, F. Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology 2007, 18, 415703.

42

Hu, M. H.; Murakami, Y.; Ogura, M.; Maruyama, S.; Okubo, T. Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J. Catal. 2004, 225, 230–239.

43

Suzuki, S.; Bower, C.; Watanabe, Y.; Zhou, O. Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 2000, 76, 4007–4009.

44

Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, Ph. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.

45

Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625.

DOI
46

Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl. Phys. Lett. 2005, 86, 073105.

47

Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

File
nr-4-6-580_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 January 2011
Revised: 06 February 2011
Accepted: 09 February 2011
Published: 02 April 2011
Issue date: June 2011

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

Part of this work was financially supported by Grantsin-Aid for Scientific Research (Nos. 19054003 and 22226006), New Energy and Industrial Technology Development Organization (NEDO) (Japan), "Development of Nanoelectronic Device Technology" of NEDO, and Global COE Program "Global Center for Excellence for Mechanical Systems Innovation". One of the authors (SA) was financially supported by a JSPS Fellowship (No. 21-1436). This work is also supported by the Very-Large-Scale Integration (VLSI) Design and Education Center (VDEC), The University of Tokyo, in collaboration with Cadence Corporation.

Return