Journal Home > Volume 4 , Issue 6

A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe3O4 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples—including industrial waste water and lake water—have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Magnetite/Reduced Graphene Oxide Nanocomposites: One Step Solvothermal Synthesis and Use as a Novel Platform for Removal of Dye Pollutants

Show Author's information Hongmei Sun1,2Linyuan Cao1,2Lehui Lu1( )
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
Graduate School of the Chinese Academy of SciencesBeijing100039China

Abstract

A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe3O4 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples—including industrial waste water and lake water—have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.

Keywords: nanocomposites, graphene, Magnetic nanoparticles, removal, dye pollutants

References(60)

1

Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Wiley-VCH: Weinheim, Germany, 2003.

DOI
2

Christie, R. M. Environmental Aspects of Textile Dyeing; Woodhead Publishing: Great Abington, Cambridge, 2007.

DOI
3

Hai, F. I.; Yamamoto, K.; Fukushi, K. Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol. 2007, 37, 315–377.

4

Husain, Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review. Crit. Rev. Biotechnol. 2006, 26, 201–221.

5

Horng, J. Y.; Huang, S. D. Phosphates, phosphites, and phosphides in environmental samples. Environ. Sci. Technol. 1993, 27, 1169–1174.

6

Kuo, W. G. Decolorizing dye wastewater with Fenton's reagent. Water Res. 1992, 26, 881–886.

7

Sujoy, K. D.; Jayati, B.; Akhil, R. D.; Arun, K. G. Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Langmuir 2006, 22, 7265–7272.

8

Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698.

9

Mohanty, K.; Naidu, J. T.; Meikap, B. C.; Biswas, M. N. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 2006, 45, 5165–5171.

10

Chen, W.; Lu, W.; Yao, Y.; Xu, M. Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber-supported cobalt phthalocyanine. Environ. Sci. Technol. 2007, 41, 6240–6245.

11

Pandit, P.; Basu, S. Removal of ionic dyes from water by solvent extraction using reverse micelles. Environ. Sci. Technol. 2004, 38, 2435–2442.

12

Yunus, R. F.; Zheng, Y. M.; K. Nanayakkara, G. N.; Chen, J. P. Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA. Ind. Eng. Chem. Res. 2009, 48, 7466–7473.

13

Zhao, X. M.; Zhang, B. H.; Ai, K. L.; Zhang, G.; Cao, L. Y.; Liu, X. J.; Sun, H. M.; Wang, H. S.; Lu, L. H. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. J. Mater. Chem. 2009, 19, 5547–5553.

14

Blackburn, R. S. Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. 2004, 38, 4905–4909.

15

Sun, Z.; Li, C.; Wu, D. Removal of methylene blue from aqueous solution by adsorption onto zeolite synthesized from coal fly ash and its thermal regeneration. J. Chem. Technol. Biotechnol. 2010, 85, 845–850.

16

Asadullah, M.; Asaduzzaman, M.; Kabir, M. S.; Mostofa, M. G.; Miyazawa, T. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 2010, 174, 437–443.

17

Wang, P.; Shi, Q.; Shi, Y.; Clark, K. K.; Stucky, G. D.; Keller, A. A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J. Am. Chem. Soc. 2009, 131, 182–188.

18

Sun, Z.; Wang, L.; Liu, P.; Wang, S.; Sun, B.; Jiang, D.; Xiao, F. Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 2006, 18, 1968–1971.

19

Bekiari, V.; Lianos, P. Ureasil gels as a highly efficient sorbent for water purification. Chem. Mater. 2006, 18, 4142–4146.

20

Zhao, M.; Tang, Z.; Liu, P. Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. J. Hazard. Mater. 2008, 158, 43–51.

21

Seredych, M.; Bandosz, T. J. Removal of cationic and ionic dyes on industrial-municipal sludge based composite adsorbents. Ind. Eng. Chem. Res. 2007, 46, 1786–1793.

22

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

23

Cao, L. Y.; Liu, Y. L.; Zhang, B. H.; Lu, L. H. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: Facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Interfaces 2010, 2, 2339–2346.

24

Ai, K. L.; Liu, Y. L.; Lu, L. H.; Cheng, X. L.; Huo, L. H. A novel strategy for making soluble graphene sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem., in press, DOI:10.1039/C0JM02865G.

25

Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K. Composites of graphene with large aromatic molecules. Adv. Mater. 2009, 21, 3191–3195.

26

Loh, K.; Bao, Q.; Ang, P. K.; Yang, J. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

27

Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.

28

Wu, Z.; Wang, D.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.

29

Hu, J.; Zhong, L.; Song, W.; Wan, L. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 2008, 20, 2977–2982.

30

Rocher, V.; Bee, A.; Siaugue, J. M.; Cabuil, V. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J. Hazard. Mater. 2010, 178, 434–439.

31

Zhai, Y. M.; Zhai, J. F.; Zhou, M.; Dong, S. J. Ordered magnetic core–manganese oxide shell nanostructures and their application in water treatment. J. Mater. Chem. 2009, 19, 7030–7035.

32

Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H. Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small 2009, 6, 169–173.

33

Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.; Kim, K. S. Water-dispersible magnetite–reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979–3986.

34

Zhang, M.; Lei, D.; Yin, X.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Magnetite/graphene composites: Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater. Chem. 2010, 20, 5538–5543.

35

Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M. One step synthesis of graphene oxide–magnetic nanoparticle composite. J. Phys. Chem. C 2010, 114, 1498–1503.

36

Liang, J.; Xu, Y.; Sui, D.; Zhang, L.; Huang, Y.; Ma, Y.; Li, F.; Chen, Y. Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C 2010, 114, 17465–17471.

37

Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

38

Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha, K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R. B. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 2010, 4, 3845–3852.

39

Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem., Int. Ed. 2005, 44, 2782–2785.

40

Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wang, Y. S.; Chen, Y. S. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714.

41

Xuan, S.; Wang, Y. J.; Yu, J. C.; Leung, K. C. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 2009, 21, 5079–5087.

42

Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

43

Lu, L. H.; Randjelovic, I.; Capek, R.; Gaponik, N.; Yang, J. H.; Zhang, H. J.; Eychmuller, A. Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy. Chem. Mater. 2005, 17, 5731–5736.

44

Lu, L. H.; Ai, K. L.; Ozaki, Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Langmuir 2008, 24, 1058–1063.

45

Warren, B. E. X-ray Diffraction; Addison-Wesley: London, 1969.

46

Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

47

Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W. P.; Yin, Y. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem., Int. Ed. 2007, 46, 4342–4345.

48

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

49

Yang, H. F.; Li, F. H.; Shan, C. S.; Han, D. X.; Zhang, Q. X.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009, 19, 4632–4638.

50

Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

51

Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Chen, Z. G.; Gu, H. C.; Lu, G. Q. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control. Adv. Mater. 2008, 20, 805–809.

52

Liu, Y. L.; Ai, K. L.; Cheng, X. L.; Huo, L. H.; Lu, L. H. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 2010, 20, 951–956.

53

Hameed, B. H.; El-Khaiary, M. I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J. Hazard. Mater. 2008, 154, 237–244.

54

Ngah, W. S. W.; Ariff, N. F. M.; Hashim, A.; Hanaf, M. A. K. M. Malachite green adsorption onto chitosan coated bentonite beads: Isotherms, kinetics and mechanism. Clean—Soil, Air, Water 2010, 38, 394–400.

55

Vijayakumar, G.; Yoo, C. K.; Elango, K. G. P.; Dharmendirakumar, M. Adsorption characteristics of rhodamine B from aqueous solution onto baryte. Clean—Soil, Air, Water 2010, 38, 202–209.

56

Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.

57

Freundlich, H. M. F. Über die adsorption in Lösungen. Z. Phys. Chem. 1906, 57A, 385–470.

58

Ai, K. L.; Liu, Y. L.; Lu, L. H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497.

59

Zhang, B. H.; Wang, H. S.; Lu, L. H.; Ai, K. L.; Zhang, G.; Cheng, X. L. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2008, 18, 2348–2355.

60

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

File
nr-4-6-550_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 November 2010
Revised: 16 December 2010
Accepted: 18 January 2011
Published: 18 February 2011
Issue date: June 2011

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

Financial support by the National Basic Research Program of China (973 Program; No.2010CB933600), and the "Hundred Talents Project" of the Chinese Academy of Sciences is gratefully acknowledged.

Return