Journal Home > Volume 4 , Issue 6

High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and show rich intramolecular features that are not observed using clean tips. Ab initio density functional theory calculations and extended Hückel theory calculations revealed that the imaging of detailed electronic states is due specifically to the decoration of the STM tip with O2. The detailed structures are differentiated only when interacting with the highly directional orbitals of the oxygen molecules adsorbed on a truncated, [111]-oriented tungsten tip. Our results indicate a method for increasing the resolution in generic scans and thus, have potential applications in fundamental research based on high-resolution electronic states of molecules on metals, concerning, for example, chemical reactions, and catalysis mechanisms.


menu
Abstract
Full text
Outline
About this article

Direct Imaging of Molecular Orbitals of Metal Phthalocyanines on Metal Surfaces with an O2-Functionalized Tip of a Scanning Tunneling Microscope

Show Author's information Zhihai Cheng1Shixuan Du1Wei Guo1Li Gao1Zhitao Deng1Nan Jiang1Haiming Guo1Hao Tang2H. -J. Gao1( )
Institute of PhysicsChinese Academy of SciencesP.O. Box 603Beijing100190China
Center for Material Elaboration and Structural StudiesB.P. 9434731055Toulouse Cedex, France

Abstract

High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and show rich intramolecular features that are not observed using clean tips. Ab initio density functional theory calculations and extended Hückel theory calculations revealed that the imaging of detailed electronic states is due specifically to the decoration of the STM tip with O2. The detailed structures are differentiated only when interacting with the highly directional orbitals of the oxygen molecules adsorbed on a truncated, [111]-oriented tungsten tip. Our results indicate a method for increasing the resolution in generic scans and thus, have potential applications in fundamental research based on high-resolution electronic states of molecules on metals, concerning, for example, chemical reactions, and catalysis mechanisms.

Keywords: density functional theory calculation, High-resolution scanning tunneling microscope (STM) imaging, functionalized STM tip, metal phthalocyanines, molecular orbital

References(41)

1

Gimzewski, J. K; Joachim, C. Nanoscale science of single molecules using local probes. Science 1999, 283, 1683–1688.

2

Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521–523.

3

Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.

4

Barth, J. V.; Weckesser, J.; Cai, C.; Günter, P.; Bürgi, L.; Jeandupeux, O.; Kern, K. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 2000, 39, 1230–1234.

DOI
5

Gao, H. J.; Sohlberg, K.; Xue Z. Q.; Chen, H. Y.; Hou, S. M.; Ma, L. P.; Fang, X. W.; Pang, S. J.; Pennycook, S. J. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett. 2000, 84, 1780–1783.

6

Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 2003, 71, 95–146.

7

Feng, M.; Guo, X. F.; Xin, L.; He, X. B.; Ji, W.; Du, S. X.; Zhang, D. Q.; Zhu, D. B.; Gao, H. J. Stable, reproducible nanorecording on rotaxane thin films. J. Am. Chem. Soc. 2005, 127, 15338–15339.

8

Du, S. X.; Gao, H. J.; Seidel, C.; Tsetseris, L.; Ji, W.; Kopf, H.; Chi, L. F.; Fuchs, H.; Pennycook, S. J.; Pantelides, S. T. Selective nontemplated adsorption of organic molecules on nanofacets and the role of bonding patterns. Phys. Rev. Lett. 2006, 97, 156105.

9

Gao, H. J.; Gao, L. Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Prog. Surf. Sci. 2009, 85, 28–91.

Kaiser, W. J.; Stroscio, J. A. Scanning Tunneling Microscopy, in Methods of Experimental Physics. Celotta, R.; Lucatorto, T., Eds.; Academic Press: San Diego, 1993; Vol. 27.
11

Foster, A. S.; Hofer, W. A. Scanning Probe Microscopy: Atomic Scale Engineering by Forces and Currents; Springer: New York, 2006.

DOI
12

Repp, J.; Meyer, G.; Stojković, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.

13

Scarfato, A.; Chang, S. H.; Kuck, S.; Brede, J.; Hoffmann, G.; Wiesendanger, R. Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surf. Sci. 2008, 602, 677–683.

14

Wang, Y.; Krögeer, J.; Berndt, R.; Hofer, W. Structural and electronic properties of ultrathin tin phthalocyanine films on Ag(111) at the single-molecule level. Angew. Chem. Int. Ed. 2009, 48, 1261–1263.

15

Ge, X.; Manzano, C.; Berndt, G.; Anger, L. T.; Köhler, F.; Herges, R. Controlled formation of an axially bonded Co-phthalocyanine dimer. J. Am. Chem. Soc. 2009, 131, 6096–6098.

16

Soe, W. H.; Manzano, C.; De Sarkar, A.; Chandrasekhar, N.; Joachim, C. Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys. Rev. Lett. 2009, 102, 176102.

17

Bellec, A.; Ample, F.; Riedel, D.; Dujardin, G.; Joachim, C. Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor. Nano Lett. 2009, 9, 144–147.

18

Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunneling microscope. Nature 1991, 352, 600–603.

19

Bartels, L.; Meyer, G.; Rieder, K. H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 1997, 71, 213–215.

20

Bartels, L.; Meyer, G.; Rieder, K. H. The evolution of CO adsorption on Cu(111) as studied with bare and CO-functionalized scanning tunneling tips. Surf. Sci. 1999, 432, L621–L626.

21

Haln, J. R.; Ho, W. Single molecule imaging and vibrational spectroscopy with a chemically modified tip of a scanning tunneling microscope. Phys. Rev. Lett. 2001, 87, 196102.

22

Deng, Z. T.; Lin, H.; Ji, W.; Gao, L.; Lin, X.; Cheng, Z. H.; He, X. B.; Lu, J. L.; Shi, D. X.; Hofer, W. A.; Gao, H. J. Selective analysis of molecular states by functionalized scanning tunneling microscopy tips. Phys. Rev. Lett. 2006, 96, 156102.

23

Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.

24

Hagelaar, J. H. A.; Flipse, C. F.; Cerda, J. L. Modeling realistic tip structures: Scanning tunneling microscopy of NO adsorption on Rh(111). Phys. Rev. B 2008, 78, 161405(R).

25

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Jiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

26

Blöchl, E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

27

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

28

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

29

Cerdá, J.; Van Hove, M. A.; Sautet, P.; Salmeron, M. Efficient method for the simulation of STM images. I. Generalized green-function formalism. Phys. Rev. B 1997, 56, 15885–15899.

30

Cerdá, J.; Yoon, A.; Van Hove, M. A.; Sautet, P.; Salmeron, M.; Somorjai, G. A. Efficient method for the simulation of STM images. II. Application to clean Rh(111) and Rh(111)+ c(4×2)-2S. Phys. Rev. B 1997, 56, 15900–15918.

31

Hoffmann, R. An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys. 1963, 39, 1397–1412.

32

Cerdá, J.; Soria, F. Accurate and transferable extended Hückel-type tight-binding parameters. Phys. Rev. B 2000, 61, 7965–7971.

33

Cheng, Z. H.; Gao, L.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; He, X. B.; Du, S. X.; Gao, H. J. Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C 2007, 111, 2656–2660.

34

Lu, X.; Hipps, K. W. Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases. J. Phys. Chem. B 1997, 101, 5391–5396.

35

Yoshimoto, S.; Tsutsumi, E.; Suto, K.; Honda, Y.; Itaya, K. Molecular assemblies and redox reactions of zinc(II) tetraphenylporphyrin and zinc(II) phthalocyanine on Au(111) single crystal surface at electrochemical interface. Chem. Phys. 2005, 319, 147–158.

36

Liao, M. S.; Scheiner, S. Electronic structure and bonding in metal phthalocyanines, metal = Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 2001, 114, 9780–9791.

37

Bohrer, F. I.; Sharoni, A.; Colesniuc, C.; Park, J.; Schuller, I. K.; Kummel, A. C.; Trogler, W. C. Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films. J. Am. Chem. Soc. 2007, 129, 5640–5646.

38

Sabelli, N. H.; Melendres, C. A. Comparative semiempirical study of oxygen binding to model iron complexes of phthalocyanine and porphyrin. J. Phys. Chem. 1982, 86, 4342–4346.

39

Zhivkov, I. Oxygen induced charge carrier generation and trapping in vacuum deposited phthalocyanine thin films. J. Optoelectr. and Adv. Mater. 2009, 11, 1396–1399.

40

Dahlberg, S. C.; Musser, M. E. Electron acceptor surface states due to oxygen adsorption on metal phthalocyanine films. J. Chem. Phys. 1980, 72, 6706–6711.

41

Lucier, A. S.; Mortensen, H.; Grütter P. Determination of the atomic structure of scanning probe microscopy tungsten tips by field ion microscopy. Phys. Rev. B 2005, 72, 235420.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2010
Revised: 12 January 2011
Accepted: 12 January 2011
Published: 23 February 2011
Issue date: June 2011

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This project is supported by the Natural Science Foundation of China (NSFC), the Chinese National "973" project of the Ministry of Science and Technology (MOST), the Chinese Academy of Sciences and the Shanghai Supercomputer Center. H. T. acknowledges the "Centre de Calcul en Midi-Pyrenees"(CALMIP) for computational resources. H. T. also thanks Sébastien Gauthier for useful discussions.

Return