Journal Home > Volume 4 , Issue 5

Monodisperse Ce1-xZrxO2 nanocrystals have been synthesized using a simple two-phase approach; adjusting the ratio of precursors used, amount of capping agent used, reaction time and temperature affords precise control over their composition, structure and size. Size-dependent enhancement of oxygen-storage capacity and kinetics of oxygen storage and release were observed. Systematic studies were conducted in order to understand the size-dependent enhancement of these properties. This work provides important insights into the synthesis and fundamental understanding of multi-component nanocrystals with a large variety of applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of Monodisperse CexZr1-xO2 Nanocrystals and the Size-Dependent Enhancement of Their Properties

Show Author's information Yuewei Zhang1,2Jing Wen1,2Jun Wang1Daocheng Pan2Meiqing Shen1( )Yunfeng Lu2( )
Key Laboratory for Green Chemical Technology of State Education MinistrySchool of Chemical Engineering & Technology, Tianjin UniversityTianjin300072China
Department of Chemical & Biomolecular EngineeringUniversity of CaliforniaLos Angeles, CA90095USA

Abstract

Monodisperse Ce1-xZrxO2 nanocrystals have been synthesized using a simple two-phase approach; adjusting the ratio of precursors used, amount of capping agent used, reaction time and temperature affords precise control over their composition, structure and size. Size-dependent enhancement of oxygen-storage capacity and kinetics of oxygen storage and release were observed. Systematic studies were conducted in order to understand the size-dependent enhancement of these properties. This work provides important insights into the synthesis and fundamental understanding of multi-component nanocrystals with a large variety of applications.

Keywords: Nanocrystals, Ce1-xZrxO2, size-dependent

References(32)

1

Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. H. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc. 2004, 126, 11458-11459.

2

Zheng, N. F.; Fan, J.; Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550-6551.

3

Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665-3675.

4

Cannas, C.; Musinu, A.; Ardu, A.; Orru, F.; Peddis, D.; Casu, M.; Sanna, R.; Angius, F.; Diaz, G.; Piccaluga, G. CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: Magnetic and spectroscopic study. Chem. Mater. 2010, 22, 3353-3361.

5

Zhou, X. C.; Xu, W. L.; Liu, G. K.; Panda, D.; Chen, P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 2010, 132, 138-146.

6

Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H. -J. Photo-chemistry on metal nanoparticles. Chem. Rev. 2006, 106, 4301-4320.

7

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.

8

Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 2005, 15, 1945-1954.

9

Casas-Cabanas, M.; Binotto, G.; Larcher, D.; Lecup, A.; Giordani, V.; Tarascon, J. M. Defect chemistry and catalytic activity of nanosized Co3O4. Chem. Mater. 2009, 21, 1939-1947.

10

Li, H. X.; Bian, Z. F.; Zhu, J.; Huo, Y. N.; Li, H.; Lu, Y. F. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 2007, 129, 4538-4539.

11

Zhao, M. W.; Shen, M. Q.; Wang, J. Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2. J. Catal. 2007, 248, 258-267.

12

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.

13

Yuan, Q.; Liu, Q.; Song, W. G.; Feng, W.; Pu, W. L.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Ordered mesoporous Ce1-xZrxO2 solid solution with crystalline walls. J. Am. Chem. Soc. 2007, 129, 6698-6699.

14

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140-3141.

15

Weidenhof, B.; Reiser, M.; Stowe, K.; Maier, W. F.; Kim, M.; Azurdia, J.; Gulari, E.; Seker, E.; Barks, A.; Laine, R. M. High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 9207-9219.

16

Sun, H. P.; Pan, X. P.; Graham, G. W.; Jen, H. W.; McCabe, R. W.; Thevuthasan, S.; Peden, C. H. F. Partial encapsulation of Pd particles by reduced ceria-zirconia. Appl. Phys. Lett. 2005, 87, 201915.

17

Dutta, P.; Pal, S.; Seehra, M. S.; Shi, Y.; Eyring, E. M.; Ernst R. D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chem. Mater. 2006, 18, 5144-5146.

18

Roberta, D. M.; Kaspar, J. Nanostructured CeO2-ZrO2 mixed oxides. J. Mater. Chem. 2005, 15, 633-648.

19

Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman, I. P. Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 2002, 80, 127-129.

20

Atribak, I.; Bueno-Lopez, A.; Garcia-Garcia, A. Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides. J. Catal. 2008, 259, 123-132.

21

Thammachart, M.; Meeyoo, V.; Risksomboon, T.; Osuwan, S. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique: CO oxidation. Catal. Today 2001, 68, 53-61.

22

Zhao, M. W.; Shen, M. Q.; Wang, J.; Wang, W. L. Influence of Pd morphology and support surface area on redox ability of Pd/Ce0.67Zr0.33O2 under CO-He pulse and transient CO-O2 measurements. Ind. Eng. Chem. Res. 2007, 46, 7883-7890.

23

Takaaki, T.; Tomoaki, W.; Nobuhiro, M.; Masahiro, Y. Hydrothermal synthesis of monodisperse Ce0.5Zr0.5O2 metastable solid solution nanocrystals. Eur. J. Inorg. Chem. 2009, 2054-2057.

24

Stark, W. J.; Madler, L.; Maciejewski, M.; Pratsinis, S. E.; Baiker, A. Flame synthesis of nanocrystalline ceria-zirconia: Effect of carrier liquid. Chem. Commun. 2003, 588-589.

25

Zhao, N. N.; Pan, D. C.; Nie, W.; Ji, X. L. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization. J. Am. Chem. Soc. 2006, 128, 10118-10124.

26

Pan, D. C.; Zhao, N. N.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Facile synthesis and characterization of luminescent TiO2 nanocrystals. Adv. Mater. 2005, 17, 1991-1995.

27

Pan, D. C.; Jiang, S. C.; An, L. J.; Jiang, B. Z. Controllable synthesis of highly luminescent and monodisperse CdS nanocrystals by a two-phase approach under mild conditions. Adv. Mater. 2004, 16, 982-985.

28

Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 2006, 128, 9330-9331.

29

Pan, D. C.; Ji, X. L.; An, L. J.; Lu, Y. F. Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 2008, 20, 3560-3566.

30

Fan, J.; Weng, D.; Wu, X. D.; Wu, X. D.; Ran, R. Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity. J. Catal. 2008, 258, 177-186.

31

Costa, C. N.; Christou, S. Y.; Georgious, G.; Efstathiou, A. M. Mathematical modeling of the oxygen storage capacity phenomenon studied by CO pulse transient experiments over Pd/CeO2 catalyst. J. Catal. 2003, 219, 259-272.

32

Boaro, M.; Giordano, F.; Recchia, S.; Santo, V. D.; Giona, M.; Trovarelli, A. On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts. Appl. Catal. B-Environ, 2004, 52, 225-237.

File
nr-4-5-494_ESM.pdf (374 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2010
Revised: 03 January 2011
Accepted: 09 January 2011
Published: 16 February 2011
Issue date: May 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was partially supported by General Motors (GM) and National Science Foundation (NSF). The authors are also grateful to the National 863 Program (No. 2009AA064803), the Program of the Natural Science Foundation of China (No. 50972104), and the Key Program of Tianjin Natural Science Foundation (No. 09JCZDJC26600).

Return