Journal Home > Volume 4 , Issue 5

A promising strategy for the selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer in a low temperature solution process is described. High densities of ZnO nanorods were grown over a large area and most ZnO nanorods were vertically well-aligned on graphene. Furthermore, selective growth of ZnO nanorods on graphene was realized by applying a simple mechanical treatment, since ZnO nanorods formed on graphene are mechanically stable on an atomic level. These results were confirmed by first principles calculations which showed that the ZnO-graphene binding has a low destabilization energy. In addition, it was found that ZnO nanorods grown on SiO2/Si with a graphene buffer layer have better optical properties than ZnO nanorods grown on bare SiO2/Si. The nanostructured ZnO-graphene materials have promising applications in future flexible electronic and optical devices.


menu
Abstract
Full text
Outline
About this article

Selective Growth of ZnO Nanorods on SiO2/Si Substrates Using a Graphene Buffer Layer

Show Author's information Won Mook Choi1,§Kyung-Sik Shin2,§Hyo Sug Lee1Dukhyun Choi3Kihong Kim1Hyeon-Jin Shin1Seon-Mi Yoon1Jae-Young Choi1( )Sang-Woo Kim2( )
Samsung Advanced Institute of TechnologyGiheung, YonginGyeonggi446-712Republic of Korea
School of Advanced Materials Science and Engineering, Sungkyunkwan (SKKU) Advanced Institute of Nanotechnology (SAINT)Center for Human Interface Nanotechnology (HINT)Sungkyunkwan University, Suwon440-746Republic of Korea
Department of Mechanical EngineeringKyung Hee University, YonginGyeonggi446-701Republic of Korea

§ These authors contributed equally to this work

Abstract

A promising strategy for the selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer in a low temperature solution process is described. High densities of ZnO nanorods were grown over a large area and most ZnO nanorods were vertically well-aligned on graphene. Furthermore, selective growth of ZnO nanorods on graphene was realized by applying a simple mechanical treatment, since ZnO nanorods formed on graphene are mechanically stable on an atomic level. These results were confirmed by first principles calculations which showed that the ZnO-graphene binding has a low destabilization energy. In addition, it was found that ZnO nanorods grown on SiO2/Si with a graphene buffer layer have better optical properties than ZnO nanorods grown on bare SiO2/Si. The nanostructured ZnO-graphene materials have promising applications in future flexible electronic and optical devices.

Keywords: Graphene, selective growth, ZnO, heterojunction, nanorod, solution

References(29)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.

3

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

4

Reina, A.; Thiele, S.; Jia, X.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509-516.

5

Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275-1279.

6

Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2009, 1, 520-527.

7

Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst Mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10, 577-583.

8

Wang, X.; Tabakman, S. M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 2008, 130, 8152-8153.

9

Kim, Y. T.; Han, J. H.; Hong, B. H.; Kwon, Y. U. Electrochemical deposition of CdSe quantum dot arrays on large-scale graphene electrodes using mesoporous silica thin film templates. Adv. Mater. 2010, 22, 515-518.

10

Lee, B.; Park, S. Y.; Kim, H. C.; Cho, H.; Vogel, E. M.; Kim, M. J.; Wallace, R. M.; Kim, J. Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Appl. Phys. Lett. 2008, 92, 203102.

11

Tong, L. M.; Li, Z. P.; Zhu, T.; Xu, H. X.; Liu, Z. F. Single gold-nanoparticle-enhanced raman scattering of individual single-walled carbon nanotubes via atomic force microscope manipulation. J. Phys. Chem. C 2008, 112, 7119-7123.

12

Saito, N.; Haneda, H.; Sekiguchi, T.; Ohashi, N.; Sakaguchi, I.; Koumoto, K. Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 2002, 14, 418-421.

DOI
13

Choi, D.; Choi, M. Y.; Choi, W. M.; Shin, H. J.; Seo, J. S.; Park, J.; Yoon, S. M.; Chae, S. J.; Lee, Y. H.; Kim, S. W.; Choi, J. Y.; Lee. S. Y.; Kim, J. M. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 2010, 22, 2187-2192.

14

Wang, X.; Gao, Y.; Wei, Y.; Wang, Z. L. Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res. 2009, 2, 177-182.

15

Kim, Y. J.; Lee, J. H.; Yi, G. C. Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 2009, 95, 213101.

16

Lee, J. M.; Pyun, Y. B.; Yi, J.; Choung, W.; Park, W. I. ZnO nanorod−graphene hybrid architectures for multifunctional conductors. J. Phys. Chem. C 2009, 113, 19134-19138.

17

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.

18

Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods Adv. Mater. 2009, 21, 2185-2189.

19

Choi, D.; Choi, M. Y.; Shin, H. J.; Yoon, S. M.; Seo, J. S.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. J. Phys. Chem. C 2010, 114, 1379-1384.

20

Kim, K. K.; Lee, S. D.; Kim, H.; Park, J. C.; Lee, S. N.; Park, Y.; Park, S. J.; Kim, S. W. Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Appl. Phys. Lett. 2009, 94, 071118.

21

Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

22

Ni, Z. H.; Wang, H. M.; Kasmin, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758-2763.

23

Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328-2333.

24

Lee, S. D.; Kim, Y. S.; Yi, M. S.; Choi, J. Y.; Kim, S. W. Morphology control and electroluminescence of ZnO nanorod/GaN heterojunctions prepared using aqueous solution. J. Phys. Chem. C 2009, 113, 8954-8958.

25

Xuan, Y.; Lin, H. C.; Ye, P. D.; Wilk, G. D. Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric. Appl. Phys. Lett. 2006, 88, 263518.

26

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

27

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-19.

28

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

29

Nobis, T.; Kaidashev, E. M.; Rahm, A.; Lorenz, M.; Lenzner, J.; Grundmann, M. Spatially inhomogeneous impurity distribution in ZnO micropillars. Nano Lett. 2004, 4, 797-800.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 September 2010
Revised: 14 December 2010
Accepted: 27 December 2010
Published: 17 February 2011
Issue date: May 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Nos. 2010-0015035 and 2009-0077682) and also by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009T100100614).

Return