Journal Home > Volume 3 , Issue 6

Highly hierarchical structures of silver indium tungsten oxide (AgIn(WO4)2) mesocrystals can be rationally fabricated via the microwave-assisted synthesis method by tuning the initial concentrations of the precursors. Photoluminescence spectra of hierarchical AgIn(WO4)2 mesocrystals were measured to investigate the correlation between the morphology, pressure, and temperature and their luminescence properties. The materials showed interesting white emission when excited by visible light of wavelength 460 nm. AgIn(WO4)2 materials having different morphologies displayed notable differences in photogenerated emission performance. The emission was strongly correlated with the surface nanostructures of outgrowths, with larger amounts of outgrowths leading to stronger emission intensities. The pressure- and temperature-dependent photoluminescence properties of these materials have also been investigated under hydrostatic pressures up to 16 GPa at room temperature and in the temperature range from 10 to 300 K.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical Silver Indium Tungsten Oxide Mesocrystals with Morphology-, Pressure-, and Temperature-Dependent Luminescence Properties

Show Author's information Bo Hu1Li-Heng Wu1Zhi Zhao2Meng Zhang1Shao-Feng Chen1Shu-Juan Liu1Hong-Yan Shi1Ze-Jun Ding3Shu-Hong Yu1( )
Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Department of Materials Science and Engineeringthe National Synchrotron Radiation Laboratory, University of Science and Technology of ChinaHefei230026China
Division of Instruments Center for Physical Science, Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefei230026China
Department of Physics, Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefei230026China

Abstract

Highly hierarchical structures of silver indium tungsten oxide (AgIn(WO4)2) mesocrystals can be rationally fabricated via the microwave-assisted synthesis method by tuning the initial concentrations of the precursors. Photoluminescence spectra of hierarchical AgIn(WO4)2 mesocrystals were measured to investigate the correlation between the morphology, pressure, and temperature and their luminescence properties. The materials showed interesting white emission when excited by visible light of wavelength 460 nm. AgIn(WO4)2 materials having different morphologies displayed notable differences in photogenerated emission performance. The emission was strongly correlated with the surface nanostructures of outgrowths, with larger amounts of outgrowths leading to stronger emission intensities. The pressure- and temperature-dependent photoluminescence properties of these materials have also been investigated under hydrostatic pressures up to 16 GPa at room temperature and in the temperature range from 10 to 300 K.

Keywords: temperature, morphology, Photoluminescence, AgIn(WO4)2, mesocrystal, high-pressure

References(49)

1

Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.

2

Li, Y. C.; Ye, M. F.; Yang, C. H.; Li, X. H.; Li, Y. F. Composition- and shape-controlled synthesis and optical properties of ZnxCd1-xS alloyed nanocrystals. Adv. Funct. Mater. 2005, 15, 433–441.

3

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

4

Kozma, P.; Bajgar, R.; Kozma, P. Radiation damage of PbWO4 crystals due to irradiation by Co-60 gamma rays. Radiat. Phys. Chem. 2002, 65, 127–130.

5

Zhou, Y. X.; Yao, H. B.; Zhang, Q.; Gong, J. Y.; Liu, S. J.; Yu, S. H. Hierarchical FeWO4 microcrystals: Solvothermal synthesis and their photocatalytic and magnetic properties. Inorg. Chem. 2009, 48, 1082–1090.

6

Tanaka, K.; Miyajima, T.; Shirai, N.; Zhuang, Q.; Nakata, R. Laser photochemical ablation of CdWO4 studied with the time-of-flight mass-spectrometric technique. J. Appl. Phys. 1995, 77, 6581–6587.

7

Qu, W. M.; Wlodarski, W.; Meyer, J. U. Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sens. Actuat. B 2000, 64, 76–82.

8

Ehrenberg, H.; Weitzel, H.; Heid, C.; Fuess, H.; Wltschek, G.; Kroener, T.; van Tol, J.; Bonnet, M. Magnetic phase diagrams of MnWO4. J. Phys. : Condens. Matter 1997, 9, 3189–3203.

9

Liu, B.; Yu, S. H.; Li, L. J.; Zhang, Q.; Zhang, F.; Jiang, K. Morphology control of stolzite microcrystals with high hierarchy in solution. Angew. Chem. Int. Edit. 2004, 43, 4745–4750.

10

Zhang, Q.; Chen, X. Y.; Zhou, Y. X.; Zhang, G. B.; Yu, S. H. Synthesis of ZnWO4@MWO4 (M = Mn, Fe) core–shell nanorods with optical and antiferromagnetic property by oriented attachment mechanism. J. Phys. Chem. C 2007, 111, 3927–3933.

11

Zhang, Q.; Yao, W. T.; Chen, X. Y.; Zhu, L. W.; Fu, Y. B.; Zhang, G. B.; Sheng, L. S.; Yu, S. H. Nearly monodisperse tungstate MWO4 microspheres (M = Pb, Ca): Surfactant-assisted solution synthesis and optical properties. Cryst. Growth Des. 2007, 7, 1423–1431.

12

Su, Y. G.; Li, G. S.; Xue, Y. F.; Li, L. P. Tunable physical properties of CaWO4 nanocrystals via particle size control. J. Phys. Chem. C 2007, 111, 6684–6689.

13

Su, Y. G.; Li, L. P.; Li, G. S. Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem. Mater. 2008, 20, 6060–6067.

14

Su, Y. G.; Li, L. P.; Li, G. S. Self-assembly and multicolor emission of core/shell structured CaWO4: Na+/Ln3+ spheres. Chem. Commun. 2008, 4004–4006.

15

Gautam, U. K.; Fang, X. S.; Bando, Y.; Zhan, J. H.; Golberg, D. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube—In nanowire core–shell heterostructures. ACS Nano 2008, 2, 1015–1021.

16

Zhai, T. Y.; Fang, X. S.; Bando, Y. S.; Liao, Q.; Xu, X. J.; Zeng, H. B.; Ma, Y.; Yao, J. N.; Golberg, D. Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. ACS Nano 2009, 3, 949–959.

17

Li, Y.; Xiang, J.; Qian, F.; Gradecak, S.; Wu, Y.; Yan, H.; Yan, H.; Blom, D. A.; Lieber, C. M. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 2006, 6, 1468–1473.

18

Xu, L.; Su, Y.; Li, S.; Chen, Y. Q.; Zhou, Q. T.; Yin, S.; Feng, Y. Self-assembly and hierarchical organization of Ga2O3/In2O3 nanostructures. J. Phys. Chem. B 2007, 111, 760–766.

19

Jung, Y.; Ko, D. K.; Agarwal, R. Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett. 2007, 7, 264–268.

20

Zhai, T. Y.; Fang, X. S.; Bando, Y.; Dierre, B.; Liu, B. D.; Zeng, H. B.; Xu, X. J.; Huang, Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D. Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/ nanostructures. Adv. Funct. Mater. 2009, 19, 2423–2430.

21

Banerjee, D.; Jo, S. H.; Ren, Z. F. Enhanced field emission of ZnO nanowires. Adv. Mater. 2004, 16, 2028–2032.

22

Fang, X. S.; Gautam, U. K.; Bando, Y.; Dierre, B.; Sekiguchi, T.; Golberg, D. Multiangular branched ZnS nanostructures with needle-shaped tips: Potential luminescent and field-emitter nanomaterial. J. Phys. Chem. C 2008, 112, 4735–4742.

23

He, J. H.; Yang, R. S.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L. Aligned AlN nanorods with multi-tipped surfaces: Growth, field-emission, and cathodoluminescence properties. Adv. Mater. 2006, 18, 650–654.

24

Yang, R. S.; Chueh, Y. L.; Morber, J. R.; Snyder, R.; Chou, L. J.; Wang, Z. L. Single-crystalline branched zinc phosphide nanostructures: Synthesis, properties, and optoelectronic devices. Nano Lett. 2007, 7, 269–275.

25

El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semi-conductor nanocrystals. Acc. Chem. Res. 2004, 37, 326–333.

26

Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zhao, J. W.; Zhang, H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4: Yb, Er nanocrystals. Nanotechnology 2007, 18, 275609.

27

Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zeng, Q. H.; Zhang, Y. L.; Zhang, H. Morphology-dependent upconversion luminescence of ZnO: Er3+ nanocrystals. J. Lumin. 2008, 128, 15–21.

28

Das, K.; Sharma, S. N.; Kumar, M.; De, S. K. Morphology dependent luminescence properties of Co doped TiO2 nanostructures. J. Phys. Chem. C 2009, 113, 14783–14792.

29

Shen, J. M.; Li, J. Y.; Chen, Y.; Huang, Z. Construction of unconventional hexapod-like tellurium nanostructure with morphology-dependent photoluminescence property. J. Phys. Chem. C 2009, 113, 9502–9508.

30

Kan, S. H.; Mokari, T.; Rothenberg, E.; Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater. 2003, 2, 155–158.

31

Zhai, T. Y.; Fang, X. S.; Bando, Y. S.; Liao, Q.; Xu, X. J.; Zeng, H. B.; Ma, Y.; Yao, J. N.; Golberg, D. Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. ACS Nano 2009, 3, 949–959.

32

Hu, B.; Wu, L. H.; Liu, S. J.; Yao, H. B.; Shi, H. Y.; Li, G. P.; Yu, S. H. Microwave-assisted synthesis of a new silver indium tungsten oxide mesocrystal: Selective photocatalytic properties. Chem. Commun. 2010, 2277–2279.

33

Barnett, J. D.; Block, S.; Piermarini, G. J. An optical fluorescence system for quantitative pressure measurement in the diamond–anvil cell. Rev. Sci. Instrum. 1973, 44, 1–9.

34

Yu, S. H.; Liu, B.; Mo, M. S.; Huang, J. H.; Liu, X. M.; Qian, Y. T. General synthesis of single-crystal tungstate nanorods/nanowires: A facile, low-temperature solution approach. Adv. Funct. Mater. 2003, 13, 639–647.

35

Song, S. Y.; Zhang, Y.; Xing, Y.; Wang, C.; Feng, J.; Shi, W. D.; Zheng, G. L.; Zhang, H. J. Rectangular AgIn(WO4)2 nanotubes: A promising photoelectric material. Adv. Funct. Mater. 2008, 18, 2328–2334.

36

Ovechkin, A. E.; Ryzhikov, V. D.; Tamulaitis, G.; Zukauskas, A. Luminescence of ZnWO4 and CdWO4 Crystals. Phys. Status Solidi A 1987, 103, 285–290.

37

Polak, K.; Nikl, M.; Nitsch, K.; Kobayashi, M.; Ishii, M.; Usuki, Y.; Jarolimek, O. The blue luminescence of PbWO4 single crystals. J. Lumin. 1997, 72–74, 781–783.

38

Blasse, G. Classical phosphors: A Pandora's box. J. Lumin. 1997, 72–74, 129–134.

39

Nikl, M. Wide band gap scintillation materials: Progress in the technology and material understanding. Phys. Status Solidi. A 2000, 178, 595–620.

DOI
40

Tang, J. W.; Zou, Z. G.; Ye, J. H. Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B 2003, 107, 14265–14269.

41

Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zeng, Q. H.; Zhang, Y. L.; Zhang, H. Morphology-dependent upconversion luminescence of ZnO: Er3+ nanocrystals. J. Lumin. 2008, 128, 15–21.

42

van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photo-excitation. J. Phys. Chem. B 2000, 104, 1715–1723.

43

van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J. Lumin. 2000, 90, 123–128.

44

van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. The luminescence of nanocrystalline ZnO particles: The mechanism of the ultraviolet and visible emission. J. Lumin. 2000, 87–89, 454–456.

45

Su, F. H.; Fang, Z. L.; Ma, B. S.; Ding, K.; Li, G. H.; Xu, S. J. Temperature and pressure behavior of the emission bands from Mn-, Cu-, and Eu-doped ZnS nanocrystals. J. Appl. Phys. 2004, 95, 3344–3349.

46

Paszkowicz, W.; Szuszkiewicz, W.; Dynowska, E.; Domagala, J. Z.; Firszt, F.; Meczynska, H.; Legowski, S.; Lathe, C. High-pressure structural and optical properties of wurtzite-type Zn1-xMgxSe. J. Alloy. Compd. 2004, 371, 168–171.

47

Tang, X. D.; Ding, Z. J.; Zhang, Z. M. Photoluminescence study of Nd: YVO4 under high pressure. J. Lumin. 2007, 122-123, 66–69.

48

Shan, W.; Walukiewicz, W.; Ager, J. W.; Yu, K. M.; Yuan, H. B.; Xin, H. P.; Cantwell, G.; Song, J. J. Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett. 2005, 86, 191911.

49

Wang, H.; Medina, F. D.; Liu, D. D.; Zhou, Y. D. The line-shape and zero-phonon line of the luminescence spectrum from zinc tungstate single-crystals. J. Phys. : Condens. Mat. 1994, 6, 5373–5386.

File
nr-3-6-395_ESM.pdf (509.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 November 2009
Revised: 26 February 2010
Accepted: 01 April 2010
Published: 01 June 2010
Issue date: June 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

S. H. Y. acknowledges the special funding support from the National Basic Research Program of China (No. 2010CB934700), the National Natural Science Foundation of China (NSFC, No. 50732006), the Program of International S & T Cooperation (No. 2010DFA41170), and the Principal Investigator Award by the National Synchrotron Radiation Laboratory at the University of Science and Technology of China.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return