Journal Home > Volume 3 , Issue 5

We report a theoretical investigation of self-assembled nanostructures of polymer-grafted nanoparticles in a block copolymer and explore underlying physical mechanisms by employing the self-consistent field method. By varying the particle concentration or the chain length and density of the grafted polymer, one can not only create various ordered morphologies (e.g., lamellar or hexagonally packed patterns) but also control the positions of nanoparticles either at the copolymer interfaces or in the center of one-block domains. The nanostructural transitions we here report are mainly attributed to the competition between entropy and enthalpy.


menu
Abstract
Full text
Outline
About this article

Controllable Nanostructural Transitions in Grafted Nanoparticle–Block Copolymer Composites

Show Author's information Guang-Kui XuXi-Qiao Feng( )Shou-Wen Yu
Institute of Biomechanics and Medical EngineeringDepartment of Engineering Mechanics, Tsinghua UniversityBeijing100084China

Abstract

We report a theoretical investigation of self-assembled nanostructures of polymer-grafted nanoparticles in a block copolymer and explore underlying physical mechanisms by employing the self-consistent field method. By varying the particle concentration or the chain length and density of the grafted polymer, one can not only create various ordered morphologies (e.g., lamellar or hexagonally packed patterns) but also control the positions of nanoparticles either at the copolymer interfaces or in the center of one-block domains. The nanostructural transitions we here report are mainly attributed to the competition between entropy and enthalpy.

Keywords: self-assembly, nanocomposite, Block copolymer, pattern formation, self-consistent field theory

References(30)

1

Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 2006, 314, 1107–1110.

2

Bockstaller, M. R.; Thomas, E. L. Proximity effects in self-organized binary particle-block copolymer blends. Phys. Rev. Lett. 2004, 93, 166106.

3

Liff, S. M.; Kumar, N.; McKinley, G. H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 2007, 6, 76–83.

4

Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008, 320, 1748–1752.

5

Bockstaller, M. R.; Mickiewicz, R. A.; Thomas, E. L. Block copolymer nanocomposites: perspectives for tailored functional materials. Adv. Mater. 2005, 17, 1331–1349.

6

Kim, B. J.; Chiu, J. J.; Yi, G. R.; Pine, D. J.; Kramer, E. J. Nanoparticle-induced phase transitions in diblock-copolymer films. Adv. Mater. 2005, 17, 2618–2622.

7

Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J. Control of nanoparticle location in block copolymers. J. Am. Chem. Soc. 2005, 127, 5036–5037.

8

Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J. Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template. Macromolecules 2006, 39, 4108–4114.

9

Kalra, V.; Lee, J.; Lee, J. H.; Lee, S. G.; Marquez, M.; Wiesner, U.; Joo, Y. L. Controlling nanoparticle location via confined assembly in electrospun block copolymer nanofibers. Small 2008, 4, 2067–2073.

10

Fu, S. Y.; Feng, X. Q.; Lauke, B; Mai, Y. W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos. Part B: Eng. 2008, 39, 933–961.

11

Pryamitsyn, V.; Ganesan, V. Strong segregation theory of block copolymer-nanoparticle composites. Macromolecules 2006, 39, 8499–8510.

12

Wang, Q.; Nealey, P. F.; de Pablo, J. J. Behavior of single nanoparticle/homopolymer chain in ordered structures of diblock copolymers. J. Chem. Phys. 2003, 118, 11278–11285.

13

Huh, J.; Ginzburg, V. V.; Balazs, A. C. Thermodynamic behavior of particle/diblock copolymer mixtures: Simulation and theory. Macromolecules 2000, 33, 8085–8096.

14

Schultz, A. J.; Hall, C. K.; Genzer, J. Computer simulation of block copolymer/nanoparticle composites. Macromolecules 2005, 38, 3007–3016.

15

Matsen, M. W. The standard Gaussian model for block copolymer melts. J. Phys. : Condens. Matter 2002, 14, R21–R47.

16

Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys. Rev. Lett. 1999, 83, 4317–4320.

17

Guo, Z. J.; Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. Discovering ordered phases of block copolymers: New results from a generic Fourier-space approach. Phys. Rev. Lett. 2008, 101, 028301.

18

Xu, G. K.; Li, Y.; Li, B.; Feng, X. Q.; Gao, H. J. Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matter 2009, 5, 3977–3983.

19

Xu, G. K.; Feng, X. Q.; Li, Y. Self-assembled nanostructures of homopolymer and diblock copolymer blends in a selective solvent. J. Phys. Chem. B 2010, 114, 1257–1263.

20

Sides, S. W.; Kim, B. J.; Kramer, E. J.; Fredrickson, G. H. Hybrid particle-field simulations of polymer nanocomposites. Phys. Rev. Lett. 2006, 96, 250601.

21

Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Predicting the mesophases of copolymer–nanoparticle composites. Science 2001, 292, 2469–2472.

22

Lee, J. Y.; Shou, Z. Y.; Balazs, A. C. Modeling the self-assembly of copolymer–nanoparticle mixtures confined between solid surfaces. Phys. Rev. Lett. 2003, 91, 136103.

23

Kim, J. U.; Matsen, M. W. Positioning Janus nanoparticles in block copolymer scaffolds. Phys. Rev. Lett. 2009, 102, 078303.

24

Spontak, R. J.; Shankar, R.; Bowman, M. K.; Krishnan, A. S.; Hamersky, M. W.; Samseth, J.; Bockstaller, M. R.; Rasmussen, K. Ø. Selectivity- and size-induced segregation of molecular and nanoscale species in microphase-ordered triblock copolymers. Nano Lett. 2006, 6, 2115–2120.

25

Reister, E.; Fredrickson, G. H. Phase behavior of a blend of polymer-tethered nanoparticles with diblock copolymers. J. Chem. Phys. 2005, 123, 214903.

26

Patel, D. M.; Fredrickson, G. H. Quenched and annealed disorder in randomly grafted copolymer melts. Phys. Rev. E 2003, 68, 051802.

27

Tzeremes, G.; Rasmussen, K. Ø.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers. Phys. Rev. E 2002, 65, 041806.

28

Sides, S. W.; Fredrickson, G. H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure. Polymer 2003, 44, 5859–5866.

29

Akcora, P.; Liu, H. J.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V.; Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354–359.

30

Kim, J. U.; O'Shaughnessy, B. Morphology selection of nanoparticle dispersions by polymer media. Phys. Rev. Lett. 2002, 89, 238301.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 February 2010
Revised: 07 March 2010
Accepted: 21 March 2010
Published: 01 May 2010
Issue date: May 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

Support from the National Natural Science Foundation of China (Nos. 10972121, 10732050, and 10772093), the Ministry of Education (SRFDP 20090002110047), and the 973 program of MOST (No. 2010CB631005) are acknowledged.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return