Journal Home > Volume 3 , Issue 5

An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5–10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.


menu
Abstract
Full text
Outline
About this article

Facile Synthesis and Application of Ag-Chemically Converted Graphene Nanocomposite

Show Author's information Jianfeng ShenMin ShiNa LiBo YanHongwei MaYizhe HuMingxin Ye( )
Center of Special Materials and TechnologyFudan UniversityShanghai200433China

Abstract

An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5–10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.

Keywords: silver, graphene, nanoparticle, graphene oxide

References(70)

1

Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469.

2

Sykes, E.; C. H. Surface assembly. Graphene goes undercover. Nat. Chem. 2009, 1, 175–176.

3

Wu, J. S.; Pisula, W.; Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 2007, 107, 718–747.

4

Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777.

5

Zhu, J. Graphene production: New solutions to a new problem. Nat. Nanotech. 2008, 3, 528–529.

6

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

7

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

8

Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

9

Liu, H. T.; Ryu, S. Y.; Chen, Z.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E. Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131, 17099–17101.

10

Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

11

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

12

Konatham, D.; Striolo, A. Molecular design of stable graphene nanosheets dispersions. Nano 2008, 8, 4630–4641.

13

Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of graphene. Solid State Commun. 2007, 143, 44–46.

14

Liang, M. H.; Zhi, L. J. Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 2009, 19, 5871–5878.

15

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen S. T.; Ruoff R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

16

Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.

17

Zu, S. Z.; Han, B. H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J. Phys. Chem. C 2009, 113, 13651–13657.

18

Wang, X.; Zhi, L.; Müellen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

19

Hong, W. J.; Xu, Y. X.; Lu, G. W.; Li, C.; Shi, G. Q. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem 2008, 10, 1555–1558.

20

Zhao, L.; Zhao, L.; Xu, Y. X.; Qiu, T. F.; Zhi, L. J.; Shi, G. Q. Polyaniline electrochromic devices with transparent graphene electrodes. Electrochim. Acta 2009, 55, 491–497.

21

Fan, F. R.; Park, S.; Zhu, Y.; Ruoff, R. S.; Bard, A. J. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J. Am. Chem. Soc. 2009, 131, 937–939.

22

Robinson, J. T.; Zalalutdinov, M.; Baldwin, J. W.; Snow, E. S.; Wei, Z. Q.; Sheehan, P.; Houston, B. H. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 2008, 8, 3441–3445.

23

Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 2009, 25, 12030–12033.

24

Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220.

25

Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 2009, 9, 814–818.

26

Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'Homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

27

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. P.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. 2009, 457, 706–710.

DOI
28

Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.

29

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.

30

Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. W. Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers. Chem. Commun. 2009, 4527–4529.

31

Shen, J. F.; Hu, Y. Z.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. X. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009, 21, 3514–3520

32

Dervishi, E.; Li, Z. R.; Watanabe, F.; Biswas, A.; Xu, Y.; Biris, A. R.; Saini, V.; Biris, A. S. Large-scale graphene production by RF-cCVD method. Chem. Commun. 2009, 4061–4063.

33

Somani, P. R.; Somani, S. P.; Umeno, M. Planar nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.

34

Worsley, K. A.; Ramesh, P.; Mandal, S. K.; Niyogi, S.; Itkis, M. E.; Haddon, R. C. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 2007, 445, 51–56.

35

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

36

Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347.

37

Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

38

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater 2007, 19, 4396–4404.

39

Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

40

Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

41

Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.

42

Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

43

Li, L. X.; An, B. G.; Nishihara, H.; Shiroya, T.; Aikyo, H.; Isojima, T.; Yamamoto, M.; Kyotani, T. Water-dispersible "carbon nanopods" with controllable graphene layer orientation. Chem. Commun. 2009, 4554–4556.

44

Pasricha, R.; Gupta, S.; Srivastava, A. K. A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 2009, 5, 2253–2259.

45

Wang, X. R.; Tabakman, S. M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am Chem. Soc. 2008, 130, 8152–8153.

46

Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266.

47

Seger, B.; Kamat, P. V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 2009, 113, 7990–7995.

48

Kou, R.; Shao, Y. Y.; Wang, D. H.; Engelhard, M. H.; Kwak, J. H.; Wang, J.; Viswanathan, V. V.; Wang, C. M.; Lin, Y. H.; Wang, Y. G; Aksay, I. A.; Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun 2009, 11, 954–957.

49

Yoo, E.; Okata, T.; Akita, T. Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259.

50

Xu, C.; Wang, X. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small 2009, 5, 2212–2217.

51

Lu, G. H.; Mao, S.; Park, S.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192–200.

52

Zhou, X. Z.; Huang, X.; Qi, X.; Wu, S. X.; Xue, C.; Boey, F. Y. C.; Yan, Q. Y.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846.

53

Kong, B. S.; Geng, J. X.; Jung, H. T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 2174–2176. .

54

Hassan, H. M. A.; Abdelsayed, V.; Khder, A. R. S.; AbouZeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 2009, 19, 3832–3837.

55

Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2009, 131, 8262–8270.

56

Li, Y. M.; Tang, L. H.; Li, J. H. Preparation and electro-chemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 2009, 11, 846–849.

57

Yuge, R.; Zhang, M. F.; Tomonari, M.; Yoshitake, T.; Iijima, S.; Yudasaka, M. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2008, 2, 1865–1870.

58

Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y. S.; Wang, Y. S.; Chen, Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714.

59

Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Gracio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796–4802.

60

Li, F. H.; Yang, H. F.; Shan, C. S.; Zhang, Q. X.; Han, D.; Ivaska, A.; Niu, L. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J. Mater. Chem. 2009, 19, 4022–4025.

61

Severin, N.; Kirstein, S.; Sokolov, I. M.; Rabe, J. P. Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett. 2009, 9, 457–461.

62

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

63

Shen, J. F.; Hu, Y. Z.; Li, C.; Qin, C.; Ye, M. X. Synthesis of amphiphilic graphene nanoplatelets. Small 2009, 5, 82–85.

64

Jeng, K. T.; Chien, C. C.; Hsu, N. Y.; Yen, S. C.; Chiou, S. D.; Lin, S. H.; Huang, W. M. Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition. J. Power 2006, 160, 97–104.

65

Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Li, H. Q.; Sun, G. Q.; Xin, Q. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon 2004, 42, 436–439.

66

Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 2009, 21, 5004–5006.

67

Hull, R. V.; Li, L.; Xing, Y. C.; Chusuei, C. C. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem. Mater. 2006, 18, 1780–1788.

68

Yang, H. F.; Li, F. H.; Shan, C. S.; Han, D. X.; Zhang, Q. X.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009, 19, 4632–4638.

69

Li, F. L.; Song, J. F.; Yang, H. F.; Gan, S. Y.; Zhang, Q. X.; Han, D. X.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electro-chemical supercapacitors. Nanotechnology 2009, 20, 455602.

70

Si, Y. C.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.

Publication history
Copyright
Rights and permissions

Publication history

Received: 02 March 2010
Revised: 15 March 2010
Accepted: 15 March 2010
Published: 01 May 2010
Issue date: May 2010

Copyright

© The Author(s) 2010

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return