Journal Home > Volume 3 , Issue 5

Working with a biased atomic force microscope (AFM) tip in the tapping mode under ambient atmosphere, attoliter (10−18 L) water droplet patterns have been generated on a patterned carbonaceous surface. This is essentially electrocondensation of water leading to charged droplets, as evidenced from electrostatic force microscopy measurements. The droplets are unusual in that they exhibit a highly corrugated surface and evaporate rather slowly, taking several tens of minutes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrocondensation and Evaporation of Attoliter Water Droplets: Direct Visualization Using Atomic Force Microscopy

Show Author's information Narendra Kurra1Adina Scott2Giridhar U. Kulkarni1( )
Chemistry and Physics of Materials Unit and DST Unit on NanoscienceJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur POBangalore560 064India
Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana47907USA

Abstract

Working with a biased atomic force microscope (AFM) tip in the tapping mode under ambient atmosphere, attoliter (10−18 L) water droplet patterns have been generated on a patterned carbonaceous surface. This is essentially electrocondensation of water leading to charged droplets, as evidenced from electrostatic force microscopy measurements. The droplets are unusual in that they exhibit a highly corrugated surface and evaporate rather slowly, taking several tens of minutes.

Keywords: Electrocondensation, attoliter water droplets, biased atomic force microscope (AFM) lithography, electron beam induced deposition, carbonaceous deposition

References(34)

1

Verdaguer, A.; Sacha, G. M.; Bluhm, H. Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510.

2

Salaita, K.; Wang, Y. H.; Mirkin, C. A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2007, 2, 145–155.

3

Ginger, D. S.; Zhang, H.; Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 2004, 43, 30–45.

4

Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. "Dip-pen" nanolithography. Science 1999, 283, 661–663.

5

Li, Y.; Maynor, B. W.; Liu, J. Electrochemical AFM "dip-pen" nanolithography. J. Am. Chem. Soc. 2001, 123, 2105–2106.

6

Sacha, G. M.; Verdaguer, A.; Salmeron, M. Induced water condensation and bridge formation by electric fields in atomic force microscopy. J. Phys. Chem. B 2006, 110, 14870–14873.

7

Xie, X. N.; Chung, H. J.; Sow, C. H.; Wee, A. T. S. Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mat. Sci. Eng. R: Rep. 2006, 54, 1–48.

8

Lyuksyutov, S. F.; Vaia, R. A.; Paramonov, P. B.; Juhl, S.; Waterhouse, L.; Ralich, R. M.; Sigalov, G.; Sancaktar, E. Electrostatic nanolithography in polymers using atomic force microscopy. Nat. Mater. 2003, 2, 468–472.

9

Lyuksyutov, S. F.; Paramonov, P. B.; Sharipov, R. A.; Sigalov, G. Induced nanoscale deformations in polymers using atomic force microscopy. Phys. Rev. B 2004, 70, 174110.

10

Juhl, S.; Phillips, D.; Vaia, R. A.; Lyuksyutov, S. F.; Paramonov, P. B. Precise formation of nanoscopic dots on polystyrene film using z-lift electrostatic lithography. Appl. Phys. Lett. 2004, 85, 3836–3838.

11

Reagan, M. A.; Kashyn, D.; Juhl, S.; Vaia, R. A.; Lyuksyutov, S. F. Electric charging and nanostructure formation in polymeric films using combined amplitude-modulated atomic force microscopy-assisted electrostatic nanolithography and electric force microscopy. Appl. Phys. Lett. 2008, 93, 033109.

12

Martín, C.; Rius, G.; Borrisé, X.; Pérez-Murano, F. Nanolithography on thin layers of PMMA using atomic force microscopy. Nanotechnology 2005, 16, 1016–1022.

13

Vijaykumar, T.; Kulkarni, G. U. Electrostatic nanolithography on PVP films for patterning metal nanocrystals and fullerenes. Nanotechnology 2007, 18, 445303.

14

Jang, J.; Schatz, G. C.; Ratner, M. A. Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 2003, 90, 156104.

15

Stifter, T.; Marti, O.; Bhushan, B. Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys. Rev. B 2000, 62, 13667–13673.

16

Calleja, M.; Tello, M.; García, R. Size determination of field-induced water menisci in noncontact atomic force microscopy. J. Appl. Phys. 2002, 92, 5539–5542.

17

Gómez-Moñivas, S.; Sáenz, J. J.; Calleja, M.; García, R. Field-induced formation of nanometer-sized water bridges. Phys. Rev. Lett. 2003, 91, 056101.

18

Cramer, T.; Zerbetto, F.; García, R. Molecular mechanism of water bridge buildup: Field-induced formation of nanoscale menisci. Langmuir 2008, 24, 6116–6120.

19

Schenk, M.; Füting, M.; Reichelt, R. Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy. J. Appl. Phys. 1998, 84, 4880–4884.

20

Weeks, B. L.; Vaughn, M. W.; DeYoreo, J. J. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 2005, 21, 8096–8098.

21

Piner, R. D.; Mirkin, C. A. Effect of water on lateral force microscopy in air. Langmuir 1997, 13, 6864–6868.

22

Méndez-Vilas, A.; Jódar-Reyes, A. B.; González-Martín, M. L. Ultrasmall liquid droplets on solid surfaces: Production, imaging, and relevance for current wetting research. Small 2009, 5, 1366–1390.

23

Avramescu, A.; Ueta, A.; Uesugi, K.; Suemune, I. Atomic force microscope lithography on carbonaceous films deposited by electron-beam irradiation. Appl. Phys. Lett. 1998, 72, 716–718.

24

Pérez-Murano, F.; Abadal, G.; Barniol, N.; Aymerich, X.; Servat, J.; Gorostiza, P.; Sanz, F. Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy. J. Appl. Phys. 1995, 78, 6797–6801.

25
Note: Volumes of water condensates are calculated using SPIP software (www.imagemet.com)
26

Pinkerton, T. D.; Scovell, D. L.; Johnson, A. L.; Xia, B.; Medvedev, V.; Stuve, E. M. Electric field effects in ionization of water–ice layers on platinum. Langmuir 1999, 15, 851–856.

27
Scanning Probe Microscopy and Spectroscopy: Theory, techniques, and applications; Bonnell, D. A., Ed.; Wiley-VCH: New York, 2001.
28

Miura, N.; Ishii, H.; Shirakashi, J. I.; Yamada, A.; Konagai, M. Electron-beam-induced deposition of carbonaceous micro structures using scanning electron microscopy. Appl. Surf. Sci. 1997, 113–114, 269–273.

29

Kim, J. H.; Ahn, S. I.; Kim, J. H.; Zin, W. C. Evaporation of water droplets on polymer surfaces. Langmuir 2007, 23, 6163–6169.

30

Hock, C.; Schmidt, M.; Kuhnen, R.; Bartels, C.; Ma, L.; Haberland, H.; v. Issendorff, B. Calorimetric observation of the melting of free water nanoparticles at cryogenic temperatures. Phys. Rev. Lett. 2009, 103, 073401.

31

Znamenskiy, V.; Marginean, I.; Vertes, A. Solvated ion evaporation from charged water nanodroplets. J. Phys. Chem. A 2003, 107, 7406–7412.

32

Daub, C. D.; Bratko, D.; Leung, K.; Luzar, A. Electrowetting at the nanoscale. J. Phys. Chem. C 2007, 111, 505–509.

33

Iribarne, J. V.; Thomson, B. A. On the evaporation of small ions from charged droplets. J. Chem. Phys. 1976, 64, 2287–2294.

34

Krymskiǐ, G. F.; Pavlov, G. S. Electrostatic model of water vapor condensation. Dokl. Phys. 2008, 53, 310–311.

File
nr-3-5-307_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 February 2010
Revised: 01 March 2010
Accepted: 01 March 2010
Published: 01 May 2010
Issue date: May 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors thank Professor C. N. R. Rao, Fellow of Royal Society (FRS) for his encouragement. Support from the Department of Science and Technology, Government of India is gratefully acknowledged. N. K. acknowledges Council of Scientific and Industrial Research (CSIR) for funding. N. K. acknowledges Ritu for reading the manuscript. The authors thank Veeco India Nano-technology Laboratory at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) for the AFM facility. A. S. acknowledges INDO-US Science & Technology Forum (IUSSTF) for funding.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return