Journal Home > Volume 3 , Issue 4

Diameter- and chirality-dependent interactions between aromatic molecule-based nanotweezers and single-walled carbon nanotubes (SWNTs) are revealed by density functional theory calculations. We found that the threshold diameter of selected SWNTs is determined by the end-to-end distance of the nanotweezer. Large-diameter SWNTs are preferred by a nanotweezer with an obtuse folding angle, whereas small-diameter SWNTs are favored by a nanotweezer with an acute folding angle. The adsorption can be further stabilized by the orientational alignment of the hexagonal rings of the nanotweezer and the SWNT sidewall. Therefore, by taking advantage of the supramolecular recognition ability of the aromatic molecule-based nanotweezer, SWNTs can be enriched with both controllable diameter and chirality.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Selection of Single-Walled Carbon Nanotubes According to Both Their Diameter and Chirality via Nanotweezers

Show Author's information Jing Zhou1,Hong Li1,Jing Lu1( )Guangfu Luo1Lin Lai1Rui Qin1Lu Wang1Shigeru Nagase2Zhengxiang Gao1( )Waining Mei3Guangping Li4Dapeng Yu1and Stefano Sanvito5
State Key Laboratory of Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871China
Department of Theoretical Molecular ScienceInstitute for Molecular ScienceOkazaki444-8585Japan
Department of PhysicsUniversity of Nebraska at OmahaOmaha, Nebraska68182-0266USA
SICAS CenterLee HallSUNY OneontaOneontaNY13820USA
School of Physics and CRANNTrinity CollegeDublin 2Ireland

These authors contributed equally to this paper.

Abstract

Diameter- and chirality-dependent interactions between aromatic molecule-based nanotweezers and single-walled carbon nanotubes (SWNTs) are revealed by density functional theory calculations. We found that the threshold diameter of selected SWNTs is determined by the end-to-end distance of the nanotweezer. Large-diameter SWNTs are preferred by a nanotweezer with an obtuse folding angle, whereas small-diameter SWNTs are favored by a nanotweezer with an acute folding angle. The adsorption can be further stabilized by the orientational alignment of the hexagonal rings of the nanotweezer and the SWNT sidewall. Therefore, by taking advantage of the supramolecular recognition ability of the aromatic molecule-based nanotweezer, SWNTs can be enriched with both controllable diameter and chirality.

Keywords: density functional theory, Carbon nanotubes, selective adsorption, nanotweezer

References(41)

1

Toyoda, S.; Yamaguchi, Y.; Hiwatashi, M.; Tomonari, Y.; Murakami, H.; Nakashima, N. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound. Chem. -Asian J. 2007, 2, 145–149.

2

Kim, W. J.; Usrey, M. L.; Strano, M. S. Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: Separate enrichment of metallic and semiconducting SWNT. Chem. Mater. 2007, 19, 1571–1576.

3

Campidelli, S.; Meneghetti, M.; Prato, M. Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionatization. Small 2007, 3, 1672–1676.

4

Balasubramanian, K.; Sordan, R.; Burghard, M.; Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 2004, 4, 827–832.

5

An, L.; Fu, Q. A.; Lu, C. G.; Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 2004, 126, 10520–10521.

6

Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H. W.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301, 1519–1522.

7

Strano, M. S. Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. J. Am. Chem. Soc. 2003, 125, 16148–16153.

8

Maeda, Y.; Kimura, S.; Kanda, M.; Hirashima, Y.; Hasegawa, T.; Wakahara, T.; Lian, Y. F.; Nakahodo, T.; Tsuchiya, T.; Akasaka, T.; Lu, J.; Zhang, X. W.; Gao, Z. X.; Yu, Y. P.; Nagase, S.; Kazaoui, S.; Minami, N.; Shimizu, T.; Tokumoto, H.; Saito, R. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 10287–10290.

9

Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.

10

Li, H. P.; Zhou, B.; Lin, Y.; Gu, L. R.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y. P. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 1014–1015.

11

Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal–nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.

12

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

13

Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

14

Tromp, R. M.; Afzali, A.; Freitag, M.; Mitzi, D. B.; Chen, Z. Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes. Nano Lett. 2008, 8, 469–472.

15

Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H.; Lee, Y. S.; Park, W.; Park, C. Y.; Lee, Y. H. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.

16

Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

17

Michael, J.; O'Connell; E. Eibergen, E.; K. Doorn, S. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat. Mater. 2005, 4, 412–418.

18

Zhou, J.; Maeda, Y.; Lu, J.; Tashiro, A.; Hasegawa, T.; Luo, G. F.; Wang, L.; Lai, L.; Akasaka, T.; Nagase, S.; Gao, Z. X.; Qin, R.; Mei, W. N.; Li, G. P.; Yu, D. P. Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules. Small 2009, 5, 244–255.

19

Papadimitrakopoulos, F.; Ju, S. -Y. Purity rolled up in a tube. Nature 2007, 450, 486–487.

20

Chen, F. M.; Wang, B.; Chen, Y.; Li, L. J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013–3017.

21

Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

22

Lu, J.; Nagase, S.; Zhang, X. W.; Wang, D.; Ni, M.; Maeda, Y.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Akasaka, T.; Gao, Z. X.; Yu, D. P.; Ye, H. Q.; Mei, W. N.; Zhou, Y. S. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: Critical role of the molecular size and orientation. J. Am. Chem. Soc. 2006, 128, 5114–5118.

23

Lu, J.; Lai, L.; Luo, G.; Zhou, J.; Qin, R.; Wang, D.; Wang, L.; Mei, W. N.; Li, G.; Gao, Z.; Nagase, S.; Maeda, Y.; Akasaka, T.; Yu, D. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts. Small 2007, 3, 1566–1576.

24

Marquis, R.; Greco, C.; Sadokierska, I.; Lebedkin, S.; Kappes, M. M.; Michel, T.; Alvarez, L.; Sauvajol, J. -L.; Meunier, S.; Mioskowski, C. Supramolecular discrimination of carbon nanotubes according to their helicity. Nano Lett. 2008, 8, 1830–1835.

25

Peng, X. B.; Komatsu, N.; Kimura, T.; Osuka, A. Improved optical enrichment of SWNTs through extraction with chiral nanotweezers of 2, 6-pyridylene-bridged diporphyrins. J. Am. Chem. Soc. 2007, 129, 15947–15953.

26

Peng, X.; Komatsu, N.; Bhattacharya, S.; Shimawaki, T.; Aonuma, S.; Kimura, T.; Osuka, A. Optically active single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 361–365.

27

Peng, X. B.; Komatsu, N.; Kimura, T.; Osuka, A. Simultaneous enrichments of optical purity and (n, m) abundance of SWNTs through extraction with 3, 6-carbazolylene-bridged chiral diporphyrin nanotweezers. ACS Nano 2008, 2, 2045–2050.

28

Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

29

Hwang, J. Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C. W.; Chen, L. C.; Nicholas, R. J. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 3543–3553.

30

Gowtham, S.; Scheicher, R. H.; Pandey, R.; Karna, S. P.; Ahuja, R. First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology 2008, 19, 125701.

31

Tournus, F.; Charlier, J. C. Ab initio study of benzene adsorption on carbon nanotubes. Phys. Rev. B 2005, 71, 165421.

32

Zhao, Y.; Truhlar, D. G. Density functionals for non-covalent interaction energies of biological importance. J. Chem. Theory Comput. 2007, 3, 289–300.

33

Basiuk, V. A. Interaction of tetraaza[14]annulenes with single-walled carbon nanotubes: A DFT study. J. Phys. Chem. B 2004, 108, 19990–19994.

34

Tournus, F.; Latil, S.; Heggie, M. I.; Charlier, J. C. π-Stacking interaction between carbon nanotubes and organic molecules. Phys. Rev. B 2005, 72, 075431.

35

Gowtham, S.; Scheicher, R. H.; Ahuja, R.; Pandey, R.; Karna, S. P. Physisorption of nucleobases on graphene: Density-functional calculations. Phys. Rev. B 2007, 76, 033401.

36

Delley, B. An all-electron numerical-method for solving the local density functional for polyatomic-molecules. J. Chem. Phys. 1990, 92, 508–517.

37

Milman, V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.; Nobes, R. H. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 2000, 77, 895–910.

DOI
38

Wang, D.; Lu, J.; Lai, L.; Ni, M.; Mei, W. N.; Li, G.; Nagase, S.; Maeda, Y.; Akasaka, T.; Gao, Z.; Zhou, Y. Effects of hole doping on selectivity of naphthalene towards single-wall carbon nanotubes. Comp. Mater. Sci. 2007, 40, 354–358.

39

Wang, D.; Lu, J.; Zhou, J.; Lai, L.; Wang, L.; Luo, G. F.; Gao, Z. X.; Li, G. P.; Mei, W. N.; Nagase, S.; Maeda, Y.; Akasaka, T.; Zhou, Y. S. Selective adsorption of cations on single-walled carbon nanotubes: A density functional theory study. Comp. Mater. Sci. 2008, 43, 886–891.

40

Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Towards molecular spintronics. Nat. Mater. 2005, 4, 335–339.

41

Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S.; Lambert, C.; Ferrer, J.; Sanvito, S. Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 2006, 73, 085414.

File
nr-3-4-296_ESM.pdf (191 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 January 2010
Accepted: 12 February 2010
Published: 20 March 2010
Issue date: April 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the the National Natural Science Foundation of China (NSFC) (Nos. 10774003, 10474123, 10434010, 90626223, and 20731162012), the National Basic Research Program of China (973 Program) (Nos. 2002CB613505 and 2007CB936200, MOST of China), the Program for New Century Excellent Talents in University of Ministry of Education of China, National Foundation for Fostering Talents of Basic Science (No. J0630311), and Nebraska Research Initiative of USA (No. 4132050400). We thank R. M. Tromp and A. Afzali for helpful discussions of solvent effects.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return