Journal Home > Volume 3 , Issue 4

We present a first-principles study of the electronic transport properties of micrometer long semiconducting carbon nanotubes randomly covered with carbene functional groups. Whereas prior studies suggested that metallic tubes are hardly affected by such addends, we show here that the conductance of semiconducting tubes with standard diameter is, on the contrary, severely damaged. The configurational-averaged conductance as a function of tube diameter, with a coverage of up to one hundred molecules, is extracted. Our results indicate that the search for a conductance-preserving covalent functionalization route remains a challenging issue.


menu
Abstract
Full text
Outline
About this article

Quantum Transport Properties of Chemically Functionalized Long Semiconducting Carbon Nanotubes

Show Author's information Alejandro Lopez-Bezanilla1Xavier Blase2Stephan Roche1,3( )
Commissariat a l'Energie Atomique38054 Grenoble CedexFrance
Institut NéelCNRS and Université Joseph FourierB.P. 16638042Grenoble Cedex 09, France
CIN2 (CSIC-ICN) BarcelonaCampus UABE-08193 BellaterraSpain

Abstract

We present a first-principles study of the electronic transport properties of micrometer long semiconducting carbon nanotubes randomly covered with carbene functional groups. Whereas prior studies suggested that metallic tubes are hardly affected by such addends, we show here that the conductance of semiconducting tubes with standard diameter is, on the contrary, severely damaged. The configurational-averaged conductance as a function of tube diameter, with a coverage of up to one hundred molecules, is extracted. Our results indicate that the search for a conductance-preserving covalent functionalization route remains a challenging issue.

Keywords: Nanotubes, functionalization, electronic transport, carbene

References(36)

1

Charlier, J. C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732.

2

Guo, X. F.; Huang, L. M.; O'Brien, S.; Kim, P.; Nuckolls, K. Directing and sensing changes in molecular conformation on individual carbon nanotube field effect transistors. J. Am. Chem. Soc. 2007, 127, 15045–15047.

3

Simmons, J. M.; In, I.; Campbell, V. E.; Mark, T. J.; Léonard, F.; Gopalan, P.; Eriksson, M. A. Optically modulated conduction in chromophore-functionalized single-wall carbon nanotubes. Phys. Rev. Lett. 2007, 98, 086802.

4

Borghetti, J.; Derycke, V.; Lenfant, S.; Chenevier, P.; Filoramo, A.; Goffman, M.; Vuillaume, D.; Bourgoin, J. P. Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. 2006, 18, 2535–2540.

5

Mannik, J.; Goldsmith, B. R.; Kane, A.; Collins, P. G. Chemically induced conductance switching in carbon nanotube circuits. Phys. Rev. Lett. 2006, 97, 016601.

6

Goldsmith, B. R.; Coroneus, J. G.; Khalap, V. R.; Kane, A. A.; Weiss, G. A.; Collins, P. G. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 2007, 315, 77–81.

7

Meunier, V.; Kalinin, S. V.; Sumpter, B. G. Nonvolatile memory elements based on the intercalation of organic molecules inside carbon nanotubes. Phys. Rev. Lett. 2007, 98, 056401.

8

Derycke, V.; Auvray, S.; Borghetti, J.; Chung, C. L.; Lefèvre, R.; Lopez-Bezanilla, A.; Nguyen, K.; Robert, G.; Schmidt, G.; Anghel, C.; Chimot, N.; Lyonnais, S.; Streiff, S.; Campidelli, S.; Chenevier, P.; Filoramo, A.; Goffman, M. F.; Goux-Capes, L.; Latil, S.; Blase, X.; Triozon, F.; Roche S.; Bourgoin, J. P. Carbon nanotube chemistry and assembly for electronic devices. C. R. Physique 2009, 10, 330–347.

9

Bahr, J. L.; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 2001, 13, 3823–3824.

10

Cabana, J.; Martel, R. Probing the reversibility of sidewall functionalization using carbon nanotube transistors. J. Am. Chem. Soc. 2007, 129, 2244–2245.

11

Balasubramanian, K.; Lee, E. J. H.; Weitz, R. T.; Burghard, T.; Kern, T. Carbon nanotube transistors–chemical functionalization and device characterization. Phys. Status Solidi A 2008, 205, 633–646.

12

Le, Y. S.; Nardelli, M. B.; Marzari, N. Band structure and quantum conductance of nanostructures from maximally localized wannier functions: The case of functionalized carbon nanotubes Phys. Rev. Lett. 2005, 95, 076804.

13

Triozon, F.; Lambin, P.; Roche, S. Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions. Nanotechnology 2005, 16, 230–233.

14

Lopez-Bezanilla, A.; Triozon, F.; Latil, S.; Blase, X.; Roche, S. Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale. Nano Lett. 2009, 9, 940–944.

15

Chen, Y.; Haddon, R. C.; Fang, S.; Rao, A. M.; Lee, W. H.; Dickey, E. C.; Grulke, E. A.; Pendergrass, J. C.; Chavan, A.; Haley, B. E.; Smalley, R. E. Chemical attachment of organic functional groups to single-walled carbon nanotube material. J. Mater. Res. 1998, 13, 2423–2431.

16

Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Solution properties of single-walled carbon nanotubes Science 1998, 282, 95–98.

17

Holzinger, M.; Vostrowsky, Q.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 2001, 40, 4002–4005.

DOI
18

Coleman, K. S.; Bailey, S. R.; Fogden, S.; Green, M. L. H. Functionalization of single-walled carbon nanotubes via the bingel reaction. J. Am. Chem. Soc. 2003, 125, 8722–8723.

19

Chen, Z. F.; Nagase, S.; Hirsch, A.; Haddon, R. C.; Thiel, W.; Schley, P. C. Side-wall opening of single-walled carbon nanotubes (SWCNTs) by chemical modification: A critical theoretical study. Angew. Chem. Int. Ed. 2004, 43, 1552–1554.

20

Lee, Y. S.; Marzari, N. Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys. Rev. Lett. 2006, 97, 116801.

21

Park, H.; Zhao, J. J.; Lu, J. P. Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett. 2006, 6, 916–919.

22

Sánchez-Portal, D.; Ordejon, P.; Artacho, E.; Soler, J. M. Density-functional method for very large systems with LCAO basis sets. Int. J. Quant. Chem. 1997, 65, 453–461.

DOI
23

Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matter 2002, 14, 2745–2779.

24

Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

25

Lee, Y. S.; Marzari, N. Cycloadditions to control bond breaking in naphthalenes, fullerenes, and carbon nanotubes: A first-principles study. J. Phys. Chem. C 2008, 112, 4480–4485.

26

Kane, C. L.; Mele, E. L. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 1997, 78, 1932.

27

Biel, B.; García-Vidal, F. J.; Rubio, A.; Flores, F. Ab initio study of transport properties in defected carbon nanotubes: An O(N) approach. J. Phys: Condes. Matter 2008, 20, 294214.

28

Adessi, Ch.; Roche, S.; Blase, X. Reduced backscattering in potassium-doped nanotubes: Ab initio and semiempirical simulations. Phys. Rev. B 2006, 73, 125414.

29

Triozon, F.; Roche, S. Efficient linear scaling method for computing the Landauer–Büttiker conductance. Eur. Phys. J. B 2005, 46, 427–431.

30

Triozon, F.; Lambin, P.; Roche, S. Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions. Nanotechnology 2005, 16, 230–233.

31

Avriller, R.; Roche, S.; Triozon, F.; Blase, X. Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes. Mod. Phys. Lett. B 2007, 21, 1955–1982.

32

Rocha, A. R.; Rossil, M.; Fazzio, A.; da Silva, A. J. R. Designing real nanotube-based gas sensors. Phys. Rev. Lett. 2008, 100, 176803.

33

Markussen, T.; Rurali, R.; Brandbyge, M.; Jauho, A. P. Electronic transport through Si nanowires: Role of bulk and surface disorder. Phys. Rev. B 2006, 74, 245313.

34
The convergence to the clean system at the boundaries of a functionalized nanotube section can be checked through comparison of the conductance profiles obtained from its last layers (dotted lines in Fig. 2 and Fig. 3) with those of pristine nanotubes sections.
35

Margine, E. R.; Bocquet, M. L.; Blase, X. Thermal stability of graphene and nanotube covalent functionalization. Nano Lett. 2008, 8, 3315–3319.

36

Latil, S.; Roche, S.; Charlier, J. C. Electronic transport in carbon nanotubes with random coverage of physisorbed molecules. Nano Lett. 2005, 5, 2216–2219.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 January 2010
Revised: 11 February 2010
Accepted: 12 February 2010
Published: 17 March 2010
Issue date: April 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

We thank the Centre de Calcul Recherche et Technologie of the Commissariat à l'Energie Atomique supercomputing facilities for providing computational resources and technical support. Financial support from the Agence National pour la Recherche (programme ANR/PNANO) project ACCENT is acknowledged. A. L. B. acknowledges support from the Marie–Curie fellowship CHEMTRONICS program. S. R. is indebted to the Alexander von Humboldt Foundation for financial support. Francois Triozon, Luigi Genovese, and Thierry Deutsch are acknowledged for fruitful discussions.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return