Journal Home > Volume 3 , Issue 4

A systematic experimental and theoretical investigation of the elastic and failure properties of ZnO nanowires (NWs) under different loading modes has been carried out. In situ scanning electron microscopy (SEM) tension and buckling tests on single ZnO NWs along the polar direction [0001] were conducted. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The bending modulus increased more rapidly than the tensile modulus, which demonstrates that the elasticity size effects in ZnO NWs are mainly due to surface stiffening. Two models based on continuum mechanics were able to fit the experimental data very well. The tension experiments showed that fracture strain and strength of ZnO NWs increased as the NW diameter decreased. The excellent resilience of ZnO NWs is advantageous for their applications in nanoscale actuation, sensing, and energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mechanical Properties of ZnO Nanowires Under Different Loading Modes

Show Author's information Feng Xu1Qingqun Qin1Ashish Mishra2Yi Gu2Yong Zhu1( )
Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleigh, North Carolina27695USA
Department of Physics and AstronomyWashington State UniversityPullman, Washington99164USA

Abstract

A systematic experimental and theoretical investigation of the elastic and failure properties of ZnO nanowires (NWs) under different loading modes has been carried out. In situ scanning electron microscopy (SEM) tension and buckling tests on single ZnO NWs along the polar direction [0001] were conducted. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The bending modulus increased more rapidly than the tensile modulus, which demonstrates that the elasticity size effects in ZnO NWs are mainly due to surface stiffening. Two models based on continuum mechanics were able to fit the experimental data very well. The tension experiments showed that fracture strain and strength of ZnO NWs increased as the NW diameter decreased. The excellent resilience of ZnO NWs is advantageous for their applications in nanoscale actuation, sensing, and energy conversion.

Keywords: mechanical property, size effect, fracture, ZnO nanowire, Young's modulus

References(35)

1

Wang, Z. L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. : Condens. Mater. 2004, 16, R829–R858.

2

Zhou, J.; Fei, P.; Gao, Y. F.; Gu, Y. D.; Liu, J.; Bao, G.; Wang, Z. L. Mechanical–electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 2008, 8, 2725–2730.

3

Yuan, Q. Z.; Zhao, Y. P.; Li, L. M.; Wang, T. H. Ab initio study of ZnO-based gas-sensing mechanisms: Surface reconstruction and charge transfer. J. Phys. Chem. C 2009, 113, 6107–6113.

4

Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 200484, 3654–3656.

5

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

6

Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally-packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

7

Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.; Yan, Y. J. Size dependence of Young's modulus in ZnO nanowires. Phys. Rev. Lett. 2006, 96, 075505.

8

Bai, X. D.; Gao, P. X.; Wang, Z. L.; Wang, E. G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806.

9

Stan, G.; Ciobanu, C. V.; Parthangal, P. M.; Cook, R. F. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 2007, 7, 3691–3697.

10

Wen, B. W.; Sader, J. E.; Boland, J. J. Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 2008, 101, 175502.

11

Hoffmann, S.; Ostlund, F.; Michler, J.; Fan, H. J.; Zacharias, M.; Christiansen, S. H.; Ballif, C. Fracture strength and Young's modulus of ZnO nanowires. Nanotechnology 2007, 18, 205503.

12

Agrawal, R.; Peng, B.; Gdoutos, E. E.; Espinosa, H. D. Elasticity size effects in ZnO nanowires—A combined experimental–computational approach. Nano Lett. 2008, 8, 3668–3674.

13

Desai, A. V.; Haque, M. A. Mechanical properties of ZnO nanowires. Sensor. Actuat. A: Phys. 2007, 134, 169–176.

14

Ni, H.; Li, X. D. Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 2006, 17, 3591–3597.

15

Zhu, Y.; Moldovan, N.; Espinosa, H. D. A micro-electromechanical load sensor used for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 2005, 86, 013506.

16

Zhu, Y.; Espinosa, H. D. An electro-mechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 14503–14508.

17

Park, H. S.; Cai, W.; Espinosa, H. D.; Huang, H. Mechanics of crystalline nanowires. MRS Bull. 2009, 34, 178–183.

18

Kulkarni, A. J.; Zhou, M.; Ke, F. J. Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 2005, 16, 2749–2756.

19

Cao, G. X.; Chen, X. Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Phys. Rev. B 2007, 76, 165407.

20

Zhang, L. X.; Huang, H. C. Young's moduli of ZnO nanoplates: Ab initio determinations. Appl. Phys. Lett. 2006, 89, 183111.

21

Liu, X. J.; Li, J. W.; Zhou, Z. F.; Yang, L. W.; Ma, Z. S.; Xie, G. F.; Pan, Y.; Sun, C. Q. Size-induced elastic stiffening of ZnO nanostructures: Skin-depth energy pinning. Appl. Phys. Lett. 2009, 94, 131902.

22

Miller, R. E.; Shenoy, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology 2000, 11, 139–147.

23

McDowell, M. T.; Leach, A. M.; Gall, K. Bending and tensile deformation of metallic nanowires. Model. Simul. Mater. Sci. Eng. 2008, 16, 045003.

24

He, M. R.; Shi, Y.; Zhou, W.; Chen, J. W.; Yan, Y. J.; Zhu, J. Diameter dependence of modulus in zinc oxide nanowires and the effect of loading mode: In situ experiments and universal core–shell approach. Appl. Phys. Lett. 2009, 95, 091912.

25

Chen, C. Q.; Zhu, J. Bending strength and flexibility of ZnO nanowires. Appl. Phys. Lett. 2007, 90, 043105.

26

Agrawal, R.; Peng, B.; Gdoutos, E.; Espinosa, H. D. Experimental–computational investigation of ZnO nanowires strength and fracture. Nano Lett. 2009, 9, 4177–4183.

27

Soudi, A.; Khan, E. H.; Dickinson, J. T.; Gu, Y. Observation of unintentionally incorporated nitrogen-related complexes in ZnO and GaN nanowires. Nano Lett. 2009, 9, 1844–1849.

28

Zhu, Y.; Xu, F.; Qin, Q. Q.; Fung, W. Y.; Lu, W. Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 2009, 9, 3934–3939.

29

Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969.

30

Hsin, C. L.; Mai, W. J.; Gu, Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L. Elastic properties and buckling of silicon nanowires. Adv. Mater. 2008, 20, 3919–3923.

31

Gurtin, M. E.; Murdoch, A. I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323.

32

Cammarata, R. C. Surface and interface stress effects in thin films. Prog. Surf. Sci. 1994, 46, 1–38.

33

Gibbs, J. W. In The Scientific Papers of J. Willard Gibbs; Longmans-Green: London, 1906; Vol. 1, pp 55.

DOI
34

Lu, C. S.; Danzer, R.; Fischer, F. D. Fracture statistics of brittle materials: Weibull or normal distribution. Phys. Rev. E 2002, 65, 067102.

35

Wang, J.; Kulkarni, A. J.; Sarasamak, K.; Limpijumnong, S.; Ke, F. J.; Zhou, M. Molecular dynamics and density functional studies of a body-centered-tetragonal polymorph of ZnO. Phys. Rev. B 2007, 76, 172103.

File
nr-3-4-271_ESM.pdf (385.7 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 November 2009
Revised: 17 January 2010
Accepted: 08 February 2010
Published: 25 March 2010
Issue date: April 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the National Science Foundation under Award No. CMMI-0826341 and a Faculty Research and Professional Development Award from North Carolina State University.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return