Journal Home > Volume 3 , Issue 2

Thermally expanded graphite was functionalized with 4-bromophenyl addends using the in situ diazonium formation procedure, and after mild sonication treatment in N, Nʹ-dimethylformamide, thin graphene layers were exfoliated from the bulk graphite. These chemically-assisted exfoliated graphene (CEG) sheets had higher solubility than pristine graphene without any stabilizer additive. More than 70% of these soluble flakes had less than 5 layers. Energy filtered transmission electron microscopy (EFTEM) elemental mapping provided evidence of the edge-selective diazonium functionalization with graphene. A majority of the Br signals came from the edges of the CEG indicating that the basal planes were not highly functionalized. The CEG was also characterized by X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Soluble Graphene Through Edge-Selective Functionalization

Show Author's information Zhengzong SunShin-ichiro KohamaZengxing ZhangJay R. LomedaJames M. Tour( )
Department of Chemistry and Mechanical Engineering and Materials Science and the Smalley Institute for Nanoscale Science and Technology Rice UniversityMS 222, 6100 Main Street, Houston, Texas 77005 USA

Abstract

Thermally expanded graphite was functionalized with 4-bromophenyl addends using the in situ diazonium formation procedure, and after mild sonication treatment in N, Nʹ-dimethylformamide, thin graphene layers were exfoliated from the bulk graphite. These chemically-assisted exfoliated graphene (CEG) sheets had higher solubility than pristine graphene without any stabilizer additive. More than 70% of these soluble flakes had less than 5 layers. Energy filtered transmission electron microscopy (EFTEM) elemental mapping provided evidence of the edge-selective diazonium functionalization with graphene. A majority of the Br signals came from the edges of the CEG indicating that the basal planes were not highly functionalized. The CEG was also characterized by X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy.

Keywords: graphene, Edge-selective functionalization, energy filtered transmission electron microscopy (EFTEM), chemically-assisted exfoliation

References(24)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Ruoff, R. Graphene: Calling all chemists. Nat. Nanotechnol. 2008, 3, 10–11.

3

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphene oxide. Carbon 2007, 45, 1558–1565.

4

Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvo-thermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

5

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

6

Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462.

7

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

8

Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

9

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

10

Jia, X. T.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H. B.; Hsieh, Y. P.; Reina, A.; Kong, J.; Terrones, M.; Dresselhaus, M. S. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705.

11

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

12

Robinson, J. A.; Puls, C. P.; Staley, N. E.; Stitt, J. P.; Fanton, M. A.; Emtsev, K. V.; Seyller, T.; Liu, Y. Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 2009, 9, 964–968.

13

Ni, Z. H.; Chen, W.; Fan, X. F.; Kuo, J. L.; Yu, T.; Wee, A. T. S.; Shen, Z. X. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B. 2008, 77, 115416.

14

Rohrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2008, 92, 201918.

15

Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

16

Teweldebrhan, D.; Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 013101.

17

Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett. 2009, 9, 1058–1063.

18

Girit, C. O.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.

19

Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 2009, 102, 015501.

20

Barnard, A. S.; Snook, I. K. Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 2008, 128, 094707.

21

Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.

22

Gupta, A. K.; Russin, T. J.; Gutierrez, H. R.; Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 2009, 3, 45–52.

23

Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

24

Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Coleman, J. N. Measurement of multicomponent solubility parameters for graphene facilities solvent discovery. Langmuir, in press, DOI: 10.1021/la903188a.

File
nr-3-2-117_ESM.pdf (817.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 December 2009
Revised: 18 December 2009
Accepted: 22 December 2009
Published: 27 March 2010
Issue date: February 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

We thank the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy within the Hydrogen Sorption Center of Excellence, No. DE-FC- 36-05GO15073, the Air Force Office of Scientific Research (CONTACT), the Office of Naval Research through a Multidisciplinary University Research Initiative (MURI) with the University of California, Berkeley (00006766), and the Advanced Energy Consortium (member companies include BP America Inc., Baker Hughes Inc., Conoco-Phillips, Halliburton Energy Services Inc., Marathon Oil Corp., Occidental Oil and Gas, Petrobras, Schlumberger, Shell, and Total) for financial support. Thanks to Dr. Wenhua Guo for assistance with the TEM.

Rights and permissions

Return