Journal Home > Volume 3 , Issue 2

Graphene has many advantageous properties, but its lack of an electronic band gap makes this two-dimensional material impractical for many nanoelectronic applications, for example, field-effect transistors. This problem can be circumvented by opening up a confinement-induced gap, through the patterning of graphene into ribbons having widths of a few nanometres. The electronic properties of such ribbons depend on both their size and the crystallographic orientation of the ribbon edges. Therefore, etching processes that are able to differentiate between the zigzag and armchair type edge terminations of graphene are highly sought after. In this contribution we show that such an anisotropic, dry etching reaction is possible and we use it to obtain graphene ribbons with zigzag edges. We demonstrate that the starting positions for the carbon removal reaction can be tailored at will with precision.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Crystallographically Selective Nanopatterning of Graphene on SiO2

Show Author's information Péter Nemes-Incze1( )Gábor Magda2Katalin Kamarás3László Péter Biró1
Research Institute for Technical Physics and Materials Science PO Box 49, H-1525 Budapest, Hungary
Budapest University of Technology and Economics (BME) PO Box 91, H-1521 Budapest, Hungary
Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences PO Box 49, H-1525 Budapest, Hungary

Abstract

Graphene has many advantageous properties, but its lack of an electronic band gap makes this two-dimensional material impractical for many nanoelectronic applications, for example, field-effect transistors. This problem can be circumvented by opening up a confinement-induced gap, through the patterning of graphene into ribbons having widths of a few nanometres. The electronic properties of such ribbons depend on both their size and the crystallographic orientation of the ribbon edges. Therefore, etching processes that are able to differentiate between the zigzag and armchair type edge terminations of graphene are highly sought after. In this contribution we show that such an anisotropic, dry etching reaction is possible and we use it to obtain graphene ribbons with zigzag edges. We demonstrate that the starting positions for the carbon removal reaction can be tailored at will with precision.

Keywords: Graphene, atomic force microscopy (AFM), nanoribbon, etching, zigzag

References(30)

1

Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

2

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803

3

Akola, J.; Heiskanen, H. P.; Manninen, M. Edge-dependent selection rules in magic triangular graphene flakes. Phys. Rev. B. 2008, 77, 193410.

4

Yamashiro, A.; Shimoi, Y.; Harigaya, K.; Wakabayashi, K. Spin- and charge-polarized states in nanographene ribbons with zigzag edges. Phys. Rev. B. 2003, 68, 193410.

5

Cervantes-Sodi, F.; Csányi, G.; Piscanec, S.; Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B. 2008, 77, 165427.

6

Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412.

7

Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.

8

Sharma, R.; Nair, N.; Strano, M. S. Structure reactivity relationships for graphene nanoribbons. J. Phys. Chem. C. 2009, 113, 14771–14777.

9

Jiang, D. S.; Sumpter, B. G.; Dai, S. Unique chemical reactivity of a graphene nanoribbon's zigzag edge. J. Chem. Phys. 2007, 126, 134701.

10

Koskinen, P.; Malola, S.; Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.

11

Konishi, S.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Catalytic creation of channels in the surface layers of highly oriented pyrolytic graphite by cobalt nanoparticles. Carbon 2006, 44, 2338–2340.

12

Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.

13

Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.

14

Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science. 2004, 306, 666–669.

15

Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

16

Liu, L.; Ryu, S. M.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965–1970.

17

Tandon, D.; Hippo, E. J.; Marsh, H.; Sebok, E. Surface topography of oxidized HOPG by scanning tunneling microscopy. Carbon 1997, 35, 35–44.

18

Koc, R.; Cattamanchi, S. V. Synthesis of beta silicon carbide powders using carbon coated fumed silica. J. Mater. Sci. 1998, 33, 2537–2549.

19

Byon, H. R.; Choi, H. C. Carbon nanotube guided formation of silicon oxide nanotrenches. Nat. Nanotechnol. 2007, 2, 162–166.

20

Girit, C. Ö.; Zettl, A. Soldering to a single atomic layer. Appl. Phys. Lett. 2007, 91, 193512.

21

Cresti, A.; Roche, S. Range and correlation effects in edge disordered graphene nanoribbons. New J. Phys. 2009, 11, 095004.

22

Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

23

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

24

Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.

25

Chen, C. C.; Bao, W. Z.; Theiss, J.; Dames, C.; Lau, C. N.; Cronin, S. B. Raman spectroscopy of ripple formation in suspended graphene. Nano Lett. 2009, 9, 4172–4176.

26

Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Jalil, R.; Ferrari, A. C.; Geim, A. K.; Novoselov, K. S; Galiotis, C. Subjecting a graphene monolayer to tension and compression. Small 2009, 5, 2397–2402.

27

Tapasztó, L.; Dobrik, G.; Nemes-Incze, P.; Vertesy, G.; Lambin, P.; Biró, L. P. Tuning the electronic structure of graphene by ion irradiation. Phys. Rev. B. 2008, 78, 233407.

28

Eroms, J.; Weiss, D. Weak localization and transport gap in graphene antidot lattices. New J. Phys. 2009, 11, 095021.

29

Masubuchi, S.; Ono, M.; Yoshida, K.; Hirakawa, K.; Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 2009, 94, 082107.

30

Knoll, A.; Bächtold, P.; Bonan, J.; Cherubini, G.; Despont, M.; Drechsler, U.; Dürig, U.; Gotsmann, B.; Häberle, W.; Hagleitner, C.; Hagleitner, C.; Jubin, D.; Lantz, M. A.; Pantazi, A.; Pozidis, H.; Rothuizen, H.; Sebastian, A.; Stulz, R.; Vettiger, P.; Wiesmann, D.; Eleftheriou, E. S. Integrating nanotechnology into a working storage device. Microelectron. Eng. 2006, 83, 1692–1697.

File
nr-3-2-110_ESM.pdf (899.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 November 2009
Revised: 10 December 2009
Accepted: 13 December 2009
Published: 27 March 2010
Issue date: February 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

Financial support by hungarian scientific research fund–national office for research and technology (OTKA–NKTH) grants Nos. 67793, 67851, and 67842 is acknowledged.

Rights and permissions

Return