Journal Home > Volume 3 , Issue 2

In situ low-voltage aberration corrected transmission electron microscopy (TEM) observations of the dynamic entrapment of a C60 molecule in the saddle of a bent double-walled carbon nanotube is presented. The fullerene interaction is non-covalent, suggesting that enhanced π–π interactions (van der Waals forces) are responsible. Classical molecular dynamics calculations confirm that the increased interaction area associated with a buckle is sufficient to trap a fullerene. Moreover, they show hopping behavior in agreement with our experimental observations. Our findings further our understanding of carbon nanostructure interactions, which are important in the rapidly developing field of low-voltage aberration corrected TEM and nano-carbon device fabrication.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced π–π Interactions Between a C60 Fullerene and a Buckle Bend on a Double-Walled Carbon Nanotube

Show Author's information Sandeep Gorantla1Stanislav Avdoshenko2Felix Börrnert1Alicja Bachmatiuk1Maria Dimitrakopoulou1Franziska Schäffel1Ronny Schönfelder1Jürgen Thomas1Thomas Gemming1Jamie H. Warner3Gianaurelio Cuniberti2Jürgen Eckert1Bernd Büchner1Mark H. Rümmeli1( )
IFW Dresden P.O. Box 270116, D-01171 Dresden, Germany
Institute for Materials Science and Max Bergmann Center of Biomaterials Dresden University of TechnologyDresden 01062 Germany
Department of Materials, University of OxfordParks Rd., Oxford OX1 3PH United Kingdom

Abstract

In situ low-voltage aberration corrected transmission electron microscopy (TEM) observations of the dynamic entrapment of a C60 molecule in the saddle of a bent double-walled carbon nanotube is presented. The fullerene interaction is non-covalent, suggesting that enhanced π–π interactions (van der Waals forces) are responsible. Classical molecular dynamics calculations confirm that the increased interaction area associated with a buckle is sufficient to trap a fullerene. Moreover, they show hopping behavior in agreement with our experimental observations. Our findings further our understanding of carbon nanostructure interactions, which are important in the rapidly developing field of low-voltage aberration corrected TEM and nano-carbon device fabrication.

Keywords: Carbon nanotubes, low-voltage transmission electron microscopy, fullerenes, molecule trap

References(19)

1

Li, C.; Chen, Y. H.; Wang, Y. B.; Iqbal, Z.; Chhowalla, M.; Mitra, S. A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J. Mater. Chem. 2007, 17, 2406–2411.

2

Allara, D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.; Cygan, M. T.; Tour, J. M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones, L. Evolution of strategies for self-assembly and hookup of molecule-based devices. Ann. NY Acad. Sci. 1998, 852, 349–370.

3

Jaochim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.

4

Moth-Poulsen, K.; Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotechnol. 2009, 4, 551–556.

5

Sun, Y. P.; Fu, K.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104.

6

Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.

7

Yao, X.; Han, Q.; Xin, H. Bending buckling behaviors of single- and multi-walled carbon nanotubes. Comput. Mater. Sci. 2008, 43, 579–590.

8

Postma, H. W. Ch.; Teepen, T.; Yao, Z.; Grofoni, M.; Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 2001, 293, 76–79.

9

Zhu, J.; Pan, Z. Y.; Wang, Y. X.; Zhou, L.; Jiang, Q. The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes. Nanotechnology 2007, 18, 275702.

10

Bandow, S.; Takizawa, M.; Hirahara, L.; Yudasaka, M.; Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 337, 48–54.

11

Monthioux, M. Filling single-wall carbon nanotubes. Carbon 2002, 40, 1809–1823.

12

Warner, J. H.; Yasuhiro, I.; Zaka, M.; Ge, L.; Akachi, T.; Okimoto, H.; Porfyrakis, K.; Watt, A. A. R.; Shinohara, H.; Briggs, G. A. D. Rotating fullerene chains in carbon nanopeapods. Nano Lett. 2008, 8, 2328–2335.

13

Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509–3515.

14

Rümmeli, M. H.; Loeffler, M.; Kramberger, C.; Simon, F.; Fülöp, F.; Jost, O.; Schöenfelder, R.; Grüeneis, A.; Gemming, T.; Pompe, W.; Büchner, B.; Pichler, T. Isotope-engineered single-wall carbon nanotubes: A key material for magnetic studies. J. Phys. Chem. C 2007, 111, 4094–4098.

15

Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Vardarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151, 283–312.

16

Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.

17

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol Graphics 1996, 4, 33–38.

18

Warner, J. H.; Ito, Y.; Rümmeli, M. H.; Gemming, T.; Büchner, B.; Shinohara, H.; Briggs, G. A. D. One-dimensional confined motion of single metal atoms inside double-walled carbon nanotubes. Phys. Rev. Lett. 2009, 102, 195504.

19

Bahnhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.

Video
nr-3-2-92_ESM_Movie_S-2.avi
File
nr-3-2-92_ESM.pdf (1.1 MB)
Image
nr-3-2-92_ESM_Movie_S-4.gif
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 October 2009
Revised: 30 November 2009
Accepted: 06 December 2009
Published: 27 March 2010
Issue date: February 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

SG acknowledges the "Pakt für Forschung und Innovation", and FS the Cusanuswerk for financial support. AB thanks the European Union (EU) for a Marie Curie (MC) fellowship (multifunctional carbon nanotubes for biomedical applications (CARBIO)). MD thanks the Deutscher Akademischer Austausch Dienst (DAAD). SA and GC thanks the EU project carbon nanotube devices at the quantum limit (CARDEQ) and the Korea Science and Engineering Foundation World Class University (WCU) Project No. R31-2008-000-10100-0.

Rights and permissions

Return