Journal Home > Volume 3 , Issue 1

A novel strategy is proposed to directly synthesize water-soluble hexagonal NaYF4 nanorods by doping rare-earth ions with large ionic radius (such as La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+), and the dopant-controlled growth mechanism is studied. Based on the doping effect, we fabricated water-soluble hexagonal NaYF4: (Yb, Er)/La and NaYF4: (Yb, Er)/Ce nanorods, which exhibited much brighter upconversion fluorescence than the corresponding cubic forms. The sizes of the nanorods can be adjusted over a broad range by changing the dopant concentration and reaction time. Furthermore, we successfully demonstrated a novel depth-sensitive multicolor bioimaging for in vivo use by employing the as-synthesized NaYF4: (Yb, Er)/La nanorods as probes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dopant-Controlled Synthesis of Water-Soluble Hexagonal NaYF4 Nanorods with Efficient Upconversion Fluorescence for Multicolor Bioimaging

Show Author's information Xuefeng Yu1Min Li1Mengyin Xie1Liangdong Chen2Yan Li2Ququan Wang1( )
Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education Wuhan UniversityWuhan430072 China
Hubei Key Laboratory of Tumor Biological Behaviors Department of Oncology, Zhongnan Hospital of Wuhan UniversityWuhan430071 China

Abstract

A novel strategy is proposed to directly synthesize water-soluble hexagonal NaYF4 nanorods by doping rare-earth ions with large ionic radius (such as La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+), and the dopant-controlled growth mechanism is studied. Based on the doping effect, we fabricated water-soluble hexagonal NaYF4: (Yb, Er)/La and NaYF4: (Yb, Er)/Ce nanorods, which exhibited much brighter upconversion fluorescence than the corresponding cubic forms. The sizes of the nanorods can be adjusted over a broad range by changing the dopant concentration and reaction time. Furthermore, we successfully demonstrated a novel depth-sensitive multicolor bioimaging for in vivo use by employing the as-synthesized NaYF4: (Yb, Er)/La nanorods as probes.

Keywords: nanocrystals, fluorescence, Crystal growth, bioimaging, hexagonal NaYF4

References(51)

1

Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1273.

2

Cao, J.; Wang, Q.; Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.

3

Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.

4

Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

5

Stone, J. W.; Sisco, P. N.; Goldsmith, E. C.; Baxter, S. C.; Murphy, C. J. Using gold nanorods to probe cell-induced collagen deformation. Nano Lett. 2007, 7, 116–119.

6

Peng, X.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

7

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.

DOI
8

Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.

9

Wang, D. S.; Xie, T.; Li. Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

10

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

11

Cao, Y. C. Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 2004, 126, 7456–7457.

12

Le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. -P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.

13

Kömpe, K.; Borchert, H.; Storz, J.; Lobo, A.; Adam, S.; Möller, T.; Haase, M. Green-emitting CePO4: Th/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed. 2003, 42, 5513–5516.

14

Stouwdam, J. W.; van Veggel, F. C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737.

15

Yu, X. F.; Chen, L. D.; Li, M.; Xie, M. Y.; Zhou, L.; Li, Y.; Wang, Q. Q. Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection. Adv. Mater. 2008, 20, 4118–4123.

16

Riwotzki, K.; Haase, M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln=Eu, Sm, Dy). J. Phys. Chem. B 1998, 102, 10129–10135.

17

Zhang, F.; Wan, Y.; Yu, T.; Zhang, F. Q.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 2007, 46, 7976–7979.

18

Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T. A four-color colloidal multiplexing nanoparticle system. ACS Nano 2008, 2, 120–124.

19

Gao, L.; Ge, X.; Chai, Z. L.; Xu, G. H.; Wang, X.; Wang. C. Shape-controlled synthesis of octahedral α-NaYF4 and its rare earth doped submicrometer particles in acetic acid. Nano Res. 2009, 2, 565–574.

20

Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride-based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.

21

Yi, G. S.; Lu, H. C.; Zhao, S. Y.; Yue, G.; Yang, W. J.; Chen, D. P.; Guo, L. H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible upconversion phosphors. Nano Lett. 2004, 4, 2191–2196.

22

Wang, L. Y.; Yan, R. X.; Huo, Z. Y.; Wang, L.; Zeng, J. H.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057.

23

Chatterjee, D. K.; Rufaihah, A. J.; Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 2008, 29, 937–943.

24

Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838.

25

Heer, S.; Kömpe, K.; Güdel, H. U.; Haase, M. Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2105.

26

Zeng, J. H.; Su, J.; Li, Z. H.; Yan, R. X.; Li, Y. D. Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 2005, 17, 2119–2123.

27

Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.

28

Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.

29

Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.

30

Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.

31

Wei, Y.; Lu, F. Q.; Zhang, X. R.; Chen, D. P. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4: Yb, Er nanoplates. Chem. Mater. 2006, 18, 5733–5737.

32

Li, C. X.; Yang, J.; Quan, Z. W.; Yang, P.; Kong, D. Y.; Lin, J. Different microstructures of β-NaYF4 fabricated by hydrothermal process: Effects of pH values and fluoride sources. Chem. Mater. 2007, 19, 4933–4942.

33

Yi, G. -S.; Chow, G. -M. Water-soluble NaYF4: Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343.

34

Shan, J.; Qin, X.; Yao, N.; Ju, Y. G. Synthesis of monodisperse hexagonal NaYF4: Yb, Ln (Ln=Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology 2007, 18, 445607.

35

Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

36

Wang, Y.; Tu, L. P.; Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Zhang, H. Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power, density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.

37

Abel, K. A.; Boyer, J. -C.; van Veggel, F. C. J. M. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J. Am. Chem. Soc. 2009, 131, 14644–14645.

38

Li, Z. Q.; Zhang, Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 2006, 45, 7732–7735.

39

Wang, F.; Liu, X G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.

40

Wang, F.; Chatterjee, D. K.; Li, Z. Q.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Synthesis of polyethylenimine/NaYF4 nano-particles with upconversion fluorescence. Nanotechnology 2006, 17, 5786–5791.

41

Neurgaonkar, R. R.; Oliver, J. R.; Cory, W. K.; Cross, L. E.; Viehland, D. Piezoelectricity in tungsten bronze crystals. Ferroelectrics 1994, 160, 265–276.

42

Jung, Y. -S.; Na, E. -S.; Paik, U.; Lee, J.; Kim, J. A. Study on the phase transition and characteristics of rare earth elements doped BaTiO3. Mater. Res. Bull. 2002, 37, 1633–1640.

43

Mansuy, C.; Leroux, F.; Mahiou, R.; Nedelec, J. M. Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: A combined study by X-ray absorption and luminescence spectroscopies. J. Mater. Chem. 2005, 15, 4129–4135.

44

Nedelec, J. -M.; Courtheoux, L.; Jallot, E.; Kinowski, C.; Lao, J.; Laquerriere, P.; Mansuy, C.; Renaudin, G.; Turrell, S. Materials doping through sol–gel chemistry: A little something can make a big difference. J. Sol–Gel Sci. Technol. 2008, 46, 259–271.

45

Walha, I.; Ehrenberg, H.; Fuess, H.; Cheikhrouhou, A. Structure and magnetic properties of lanthanum and calcium-deficient La0.5Ca0.5MnO3 manganites. J. Alloy Compd. 2007, 433, 63–67.

46

Ezekwenna, P. C.; Marasinghe, G. K.; Nam, J. -H.; James, W. J.; Yelon, W. B.; Ellouse, M.; I'Héritier, Ph. A Magnetic and crystallographic study of (Sm/Gd)2(Fe/Si)17Cz solid solutions. J. Appl. Phys. 2000, 87, 6716–6718.

47

Brixner, L. H.; Crawford, M. K.; Hyatt, G.; Carnall, W. T.; Blasse, G. Structure and luminescence of the La1-xGdxF3 system. J. Electrochem. Soc. 1991, 138, 313–317.

48

Dong, C. H.; Raudsepp, M.; van Veggel, F. C. J. M. Kinetically determined crystal structures of undoped and La3+-doped LnF3. J. Phys. Chem. C 2009, 113, 472–478.

49

Chen, Y. F.; Kim, M.; Lian, G.; Johnson, M. B.; Peng, X. G. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals. J. Am. Chem. Soc. 2005, 127, 13331–13337.

50

Andresen, M.; Stiel, A. C.; Fölling, J.; Wenzel, D.; Schönle, A.; Egner, A.; Eggeling, C.; Hell, S. W.; Jakobs, S. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 2008, 26, 1035–1040.

51

König, K. Multiphoton microscopy in life sciences. J. Microsc. 2000, 200, 83–104.

File
nr-3-1-51_ESM.pdf (757.4 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 September 2009
Revised: 25 November 2009
Accepted: 26 November 2009
Published: 05 March 2010
Issue date: January 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors thank the Natural Science Foundation of China (Nos. 10534030, 10904119), the National Program on Key Science Research (No. 2006CB921500), and the China Postdoctoral Science Foundation (No. 20090451076) for support.

Rights and permissions

Return