Journal Home > Volume 3 , Issue 2

A simple one-pot reaction that serves to functionalize graphite nanosheets (graphene) and single-walled carbon nanotubes (SWNTs) with perfluorinated alkyl groups is reported. Free radical addition of 1-iodo-1H, 1H, 2H, 2H-perfluorododecane to ortho-dichlorobenzene suspensions of the carbon nanomaterial is initiated by thermal decomposition of benzoyl peroxide. Similarly, UV photolysis of 1-iodo-perfluorodecane serves to functionalize the carbon materials. Perfluorododecyl-SWNTs, perfluorododecyl-graphene, and perfluorodecyl-graphene are characterized by infrared (IR) and Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). The products show enhanced dispersability in CHCl3 as compared to unfunctionalized starting materials. The advantage of this one-pot functionalization procedure lies in the use of pristine graphite as starting material thereby avoiding the use of harsh oxidizing conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Radical Addition of Perfluorinated Alkyl Iodides to Multi-Layered Graphene and Single-Walled Carbon Nanotubes

Show Author's information Christopher E. HamiltonJay R. LomedaZhengzong SunJames M. Tour( )Andrew R. Barron( )
Richard E. Smalley Institute for Nanoscale Science and Technology Department of Chemistry and Department of Mechanical Engineering and Materials Science, Rice UniversityHouston, Texas 77005 USA

Abstract

A simple one-pot reaction that serves to functionalize graphite nanosheets (graphene) and single-walled carbon nanotubes (SWNTs) with perfluorinated alkyl groups is reported. Free radical addition of 1-iodo-1H, 1H, 2H, 2H-perfluorododecane to ortho-dichlorobenzene suspensions of the carbon nanomaterial is initiated by thermal decomposition of benzoyl peroxide. Similarly, UV photolysis of 1-iodo-perfluorodecane serves to functionalize the carbon materials. Perfluorododecyl-SWNTs, perfluorododecyl-graphene, and perfluorodecyl-graphene are characterized by infrared (IR) and Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). The products show enhanced dispersability in CHCl3 as compared to unfunctionalized starting materials. The advantage of this one-pot functionalization procedure lies in the use of pristine graphite as starting material thereby avoiding the use of harsh oxidizing conditions.

Keywords: graphene, Nanotube, single-walled carbon nanotube, radical addition

References(23)

1

Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Dyke, C. A.; Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 2004, 108, 11151–11159.

4

Adams, D. J.; Dyson, P. J.; Tavener, S. J. In Chemistry in Alternative Reaction Media. Wiley: Sussex, 2004; pp. 57–71.

5

Hamilton, C. E.; Ogrin, D.; McJilton, L.; Moore, V. C.; Anderson, R.; Smalley, R. E.; Barron, A. R. Functionalization of SWNTs to facilitate the coordination of metal ions, compounds and clusters. Dalton Trans. 2008, 2937–2944.

6

Smalley, R. E.; Li, Y.; Moore, V. C.; Price, B. K.; Colorado, R. Jr.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. Single wall carbon nanotubes amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 2006, 128, 15824–15829.

7

Fagan, P. J.; Krusic, P. J.; McEwen, C. N.; Lazar, J.; Parker, D. H.; Herron, N.; Wasserman, E. Production of perfluoroalkylated nanospheres from buckminsterfullerene. Science 1993, 262, 404–07.

8

Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 2001, 40, 4002–4005.

DOI
9

Voggu, R.; Biswas, K.; Govindaraj, A.; Rao, C. N. R. Use of fluorous chemistry in the solubilization and phase transfer of nanocrystals, nanorods, and nanotubes. J. Phys. Chem. B 2006, 110, 20752–20755.

10

Pulikkathara, M. X.; Kuznetsov, O. V.; Peralta, I. R. G.; Wei, X.; Khabashesku, V. N. Medium density polyethylene composites with functionalized carbon nanotubes. Nanotechnol. 2009, 20, 195602–195605.

11

Ying, Y. M.; Saini, R. K.; Liang, F.; Sadana, A. K.; Billups, W. E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 2003, 5, 1471–1473.

12

Liang, F.; Beach, J. M.; Rai, P. K.; Guo, W. H.; Hauge, R. H.; Pasquali, M.; Smalley, R. E.; Billups, W. E. Highly exfoliated water-soluble single-walled carbon nanotubes. Chem. Mater. 2006, 18, 1520–1524.

13

Armarego, W. L. F.; Perrin, D. D. In Purification of Laboratory Chemicals. Butterworth-Heinemann: Oxford, 4th Ed., 1997; p. 105.

14

Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297–8301.

15

Ziegler, K. J.; Gu, Z. N.; Peng, H. Q.; Flor, E. L.; Hauge, R. H.; Smalley, R. E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541–1547.

16

Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462.

17
NIST XPS spectral database, http://srdata.nist.gov/xps/(access Oct 5, 2009).
18

Zhang, L.; Zhang, J.; Schmandt, N.; Cratty, J.; Khabashesku, V. N.; Kelly, K. F.; Barron, A. R. AFM and STM characterization of thiol and thiophene functionalized SWNTs: Pitfalls in the use of gold nanoparticles to determine the extent of side-wall functionalization in SWNTs. Chem. Commun. 2005, 5429–5430.

19

Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.

20

Chattopadhyay, J.; Mukherjee, A.; Hamilton, C. E.; Kang, J. -H.; Chakraborty, S.; Guo, W. H.; Kelly, K. F.; Barron, A. R.; Billups, W. E. Graphite epoxide. J. Am. Chem. Soc. 2008, 130, 5414–5415.

21

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

22

Chakraborty, S.; Guo, W.; Hauge, R. H.; Billups, W. E. Reductive alkylation of fluorinated graphite. Chem. Mater. 2008, 20, 3134–3136.

23

Chakraborty, S.; Chattopadhyay, J.; Guo, W. H.; Billups, W. E. Functionalization of potassium graphite. Angew. Chem. Int. Ed. 2007, 46, 4486–4488.

File
nr-3-2-138_ESM.pdf (675.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 October 2009
Revised: 13 November 2009
Accepted: 18 November 2009
Published: 27 March 2010
Issue date: February 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

Financial support for this work was provided by Wright-Patterson Air Force Laboratory and the AFOSR, the Robert A. Welch Foundation, the Advanced Energy Consortium and the Department of Energy's Hydrogen Storage Program.

Rights and permissions

Return