Journal Home > Volume 3 , Issue 1

The performance limits of a multilayer graphene nanoribbon (GNR) field-effect transistor (FET) are assessed and compared with those of a monolayer GNRFET and a carbon nanotube (CNT) FET. The results show that with a thin high dielectric constant (high-κ) gate insulator and reduced interlayer coupling, a multilayer GNRFET can significantly outperform its CNT counterpart with a similar gate and bandgap in terms of the ballistic on-current. In the presence of optical phonon scattering, which has a short mean free path in the graphene-derived nanostructures, the advantage of the multilayer GNRFET is even more significant. Simulation results indicate that multilayer GNRs with incommensurate non-AB stacking and weak interlayer coupling are the best candidates for high-performance GNRFETs.


menu
Abstract
Full text
Outline
About this article

Projected Performance Advantage of Multilayer Graphene Nanoribbons as a Transistor Channel Material

Show Author's information Yijian Ouyang1Hongjie Dai2Jing Guo1( )
Department of Electrical and Computer Engineering University of FloridaGainesvilleFL 32611 USA
Department of Chemistry Stanford UniversityStanfordCA 94305 USA

Abstract

The performance limits of a multilayer graphene nanoribbon (GNR) field-effect transistor (FET) are assessed and compared with those of a monolayer GNRFET and a carbon nanotube (CNT) FET. The results show that with a thin high dielectric constant (high-κ) gate insulator and reduced interlayer coupling, a multilayer GNRFET can significantly outperform its CNT counterpart with a similar gate and bandgap in terms of the ballistic on-current. In the presence of optical phonon scattering, which has a short mean free path in the graphene-derived nanostructures, the advantage of the multilayer GNRFET is even more significant. Simulation results indicate that multilayer GNRs with incommensurate non-AB stacking and weak interlayer coupling are the best candidates for high-performance GNRFETs.

Keywords: field-effect transistor, carbon nanotube (CNT), multilayer graphene, graphene nanoribbon (GNR), new channel material

References(23)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Zhang, Y.; Tan, Y.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

3

Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

4

Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

5

Lin, Y.; Perebeinos, V.; Chen, Z.; Avouris, P. Electrical observation of subband formation in graphene nanoribbons. Phys. Rev. B 2008, 78, 161409.

6

Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

7

Ouyang, Y.; Wang, X.; Dai, H.; Guo, J. Carrier scattering in graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 2008, 92, 243124.

8

Gunlycke, D.; Lawler, H. M.; White, C. T. Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 2007, 75, 085418.

9

Ouyang, Y.; Yoon, Y.; Fodor, J. K.; Guo, J. Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors. Appl. Phys. Lett. 2006, 89, 203107.

10

Rahman, A.; Jing Guo; Datta, S.; Lundstrom, M. Theory of ballistic nanotransistors. IEEE Trans. Electron Dev. 2003, 50, 1853–1864.

11

Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.; Avouris, P. The role of metal–nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.

12

Javey, A.; Tu, R.; Farmer, D. B.; Guo, J.; Gordon, R. G.; Dai, H. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 2005, 5, 345–348.

13

Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.

14

Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

15

Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954.

16

Son, Y.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

17

Grüneis, A.; Attaccalite, C.; Wirtz, L.; Shiozawa, H.; Saito, R.; Pichler, T.; Rubio A. Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B 2008, 78, 205425.

18

Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.

19
ITRS, International Technology Roadmap for Semiconductors, http://www.itrs.net (accessed oct 2, 2009).
20

Chen, J.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

21

Sui, Y.; Appenzeller, J. Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 2009, 9, 2973–2977.

22

Guo, J.; Yoon, Y.; Ouyang, Y. Gate electrostatics and quantum capacitance of graphene nanoribbons. Nano Lett. 2007, 7, 1935–1940.

23

Neophytou, N.; Paul, A.; Lundstrom, M.; Klimeck, G. Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Dev. 2008, 55, 1286–1297.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 October 2009
Revised: 13 November 2009
Accepted: 15 November 2009
Published: 05 March 2010
Issue date: January 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the National Science Foundation (NSF) and the Office of Naval Research (ONR), Intel, and MARCO MSD.

Rights and permissions

Return