Journal Home > Volume 4 , Issue 3

Although possible non-homogeneous strain effects in semiconductors have been investigated for over a half century and the strain-gradient can be over 1% per micrometer in flexible nanostructures, we still lack an understanding of their influence on energy bands. Here we conduct a systematic cathodoluminescence spectroscopy study of the strain-gradient induced exciton energy shift in elastically curved CdS nanowires at low temperature, and find that the red-shift of the exciton energy in the curved nanowires is proportional to the strain-gradient, an index of lattice distortion. Density functional calculations show the same trend of band gap reduction in curved nanostructures and reveal the underlying mechanism. The significant linear strain-gradient effect on the band gap of semiconductors should shed new light on ways to tune optical–electronic properties in nanoelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Linear Strain-Gradient Effect on the Energy Bandgap in Bent CdS Nanowires

Show Author's information Qiang Fu1Zi Yue Zhang2Liangzhi Kou2Peicai Wu1Xiaobing Han1Xinli Zhu1Jingyun Gao1Jun Xu1Qing Zhao1Wanlin Guo2( )Dapeng Yu1( )
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy LaboratoryDepartment of PhysicsPeking UniversityBeijing100871China
Institute of NanoscienceNanjing University of Aeronautics and AstronauticsNanjing210016China

Abstract

Although possible non-homogeneous strain effects in semiconductors have been investigated for over a half century and the strain-gradient can be over 1% per micrometer in flexible nanostructures, we still lack an understanding of their influence on energy bands. Here we conduct a systematic cathodoluminescence spectroscopy study of the strain-gradient induced exciton energy shift in elastically curved CdS nanowires at low temperature, and find that the red-shift of the exciton energy in the curved nanowires is proportional to the strain-gradient, an index of lattice distortion. Density functional calculations show the same trend of band gap reduction in curved nanostructures and reveal the underlying mechanism. The significant linear strain-gradient effect on the band gap of semiconductors should shed new light on ways to tune optical–electronic properties in nanoelectronics.

Keywords: CdS nanowire, cathodoluminescence, Strain-gradient effect, bending deformation

References(23)

1

Leong, M.; Doris, B.; Kedzierski, J.; Rim, K.; Yang, M. Silicon device scaling to the Sub-10-nm regime. Science 2004, 306, 2057–2060.

2

Cao, J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim, J. W. L.; Khanal, D. R.; Ogletree, D. F.; Grossman, J. C., et al. Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 2009, 4, 732–737.

3

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

4

He, J.; Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 2008, 8, 1798–1802.

5

Zhang, Y. F.; Han, X. D.; Zheng, K.; Zhang, Z.; Zhang, X. N.; Fu, J. Y.; Ji, Y.; Hao, Y. J.; Guo, X. Y.; Wang, Z. L. Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv. Funct. Mater. 2007, 17, 3435–3440.

6

Han, X. B.; Kou, L. Z.; Lang, X. L.; Xia, J. B.; Wang, N.; Qin, R.; Xu, J.; Liao, Z. M.; Zhang, X. Z.; Shan, X. D., et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.

7

Trauernicht, D. P.; Mysyrowicz, A.; Wolfe, J. P. Strain confinement and thermodynamics of free excitons in a direct-gap semiconductor. Phys. Rev. Lett. 1983, 28, 3590–3592.

8

Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

9

Cross, L. E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 2006, 41, 53–63.

10

Raffaele, R. Towards a bulk theory of flexoelectricity. Phys. Rev. Lett. 2010, 105, 127601.

11

Ma, R. M.; Dai, L.; Qin, G. G. High-performance nano-Schottky diodes and nano-MESFETs made on single CdS nanobelts. Nano Lett. 2007, 7, 868–873.

12

Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 630–632.

13

Zhang, M.; Zhai, T. Y.; Wang, X.; Liao, Q.; Ma, Y.; Yao, J. N. Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties. J. Solid State Chem. 2009, 182, 3188–3194.

14

Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Lensch, J. L.; Lauhon, L. J. Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl. Phys. Lett. 2006, 89, 053119.

15

Zhou, W. C.; Pan, A.; Li, Y.; Dai, G. Z.; Wan, Q.; Zhang, Q. L.; Zou, B. S. Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 2008, 112, 9253–9260.

16

Smith, A. M.; Mohs, A. M.; Nie, S. M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63.

17

Niles, D. W.; Höchst, H. Strain-induced changes in the electronic valence-band structure of a cubic CdS(100) film. Phys. Rev. B 1991, 44, 10965–10968.

18

Wu, P. C.; Ye, Y.; Sun, T.; Peng, R. M.; Wen, X. N.; Xu, W. J.; Liu, C.; Dai, L. Ultrahigh-performance inverters based on CdS nanobelts. ACS Nano 2009, 3, 3138–3142.

19

Han, X. D.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Hao, Y. J.; Guo, X. Y.; Yuan, J.; Wang, Z. L. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 2007, 7, 452–457.

20

Titova, L. V.; Hoang, T. B.; Jackon, H. E.; Smith, L. M. Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl. Phys. Lett. 2006, 89, 053119.

21

Xu, J.; Chen, L.; Yu, L.S.; Liang, H.; Zhang, B. S.; Lau, K. M. Cathodoluminescence study of InGaN/GaN quantum-well LED structures grown on a Si substrate. J. Electron. Mater. 2007, 36, 1144–1147.

22

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 2002, 14, 2745–2779.

23

Bryant, F. J.; Radford, C. J. Electron radiation damage and the green edge emission of CdS. J. Phys. C: Solid State Phys. 1970, 3, 1264–1274.

File
nr-4-3-308_ESM.pdf (794.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 October 2010
Revised: 21 November 2010
Accepted: 21 November 2010
Published: 01 March 2011
Issue date: March 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC), the State Key Research Projects for Fundamental Science (Nos. 2007CB936200, 2007CB936202, and 2009CB623703) of Ministry of Science and Technology of China (MOST), and Natural Science Foundation (NSF) of Jiangsu Province of China.

Return