Journal Home > Volume 4 , Issue 1

We report a comprehensive theoretical investigation of the catalytic reaction mechanisms of propene epoxidation on gold nanoclusters using density functional theory (DFT). We have shown that water acts as a catalytic promoter for propene epoxidation on gold catalysts. Even without reducible supports, hydroperoxyl (OOH) and hydroxyl (OH) radicals are readily formed on small-size gold clusters from co-adsorbed H2O and O2, with energy barriers as low as 4-6 kcal/mol (1 cal = 4.186 J). Propene epoxidation occurs easily through reactions between C3H6 and the weakened O-O bond of the OOH radicals on the surfaces of gold clusters.


menu
Abstract
Full text
Outline
About this article

Theoretical Investigations of the Catalytic Role of Water in Propene Epoxidation on Gold Nanoclusters: A HydroperoxylMediated Pathway

Show Author's information Chun-Ran ChangYang-Gang WangJun Li( )
Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of EducationTsinghua UniversityBeijing100084China

Abstract

We report a comprehensive theoretical investigation of the catalytic reaction mechanisms of propene epoxidation on gold nanoclusters using density functional theory (DFT). We have shown that water acts as a catalytic promoter for propene epoxidation on gold catalysts. Even without reducible supports, hydroperoxyl (OOH) and hydroxyl (OH) radicals are readily formed on small-size gold clusters from co-adsorbed H2O and O2, with energy barriers as low as 4-6 kcal/mol (1 cal = 4.186 J). Propene epoxidation occurs easily through reactions between C3H6 and the weakened O-O bond of the OOH radicals on the surfaces of gold clusters.

Keywords: density functional theory, Gold nanocluster, propene epoxidation, hydroperoxyl radical

References(44)

1

Haruta, M.; Kabayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃. Chem. Lett. 1987, 16, 405-408.

2

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153-166.

3

Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178, 566-575.

4

Huang, J. H.; Akita, T.; Ohashi, H.; Haruta, M. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2. Appl. Catal. B 2010, 95, 430-438.

5

Lee, S.; Molina, L. M.; López, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S. Selective Propene epoxidation on immobilized Au6-10 clusters: The Effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 2009, 48, 1467-1471.

6

Ojeda, M.; Iglesia, E. Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2. Chem. Commun. 2009, 352-354.

7

Huang, J. H.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem. Int. Ed. 2009, 48, 7862-7866.

8

Delley, B. An all-electron numerical-method for solving the local density functional for polyatomic-molecules. J. Chem. Phys. 1990, 92, 508-517.

9

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.

10

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

11

Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 113, 155125.

12

Huang, W.; Wang, L. -S. Au10-: Isomerism and structure-dependent O2 reactivity. Phys. Chem. Chem. Phys. 2009, 11, 2663-2667.

13

Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith D.; Andzelm. J. A generalized synchronous transit method for transition state location. Comp. Mater. Sci. 2003, 28, 250-258.

14

Yoon, B.; Häkkinen, H.; Landman, U. Interaction of O2 with gold clusters: Molecular and dissociative adsorption. J. Phys. Chem. A 2003, 107, 4066-4071.

15

López, N.; Nørskov, J. K. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262-11263.

16

Mills, G.; Gordon, M. S.; Metiu, H. The adsorption of molecular oxygen on neutral and negative Aun clusters (n = 2-5). Chem. Phys. Lett. 2002, 359, 493-499

17

Zhai, H. J.; Kiran, B.; Dai, B. Li, J. Wang, L. S. Unique CO chemisorption properties of gold hexamer: Au6(CO)n- (n = 0-3). J. Am. Chem. Soc. 2005, 127, 12098-12106.

18

Zhai, H. J.; Pan, L. L.; Dai, B.; Li, J.; Wang, L. S. Chemisorption-induced structural changes and transition from chemisorption to physisorption in Au6(CO)n- (n = 4-9). J. Phys. Chem. C 2008, 112, 11920-11928.

19

Yang, X. -F.; Wang, Y. -L.; Zhao, Y. -F.; Wang, A. -Q.; Zhang, T.; Li, J. Adsorption-induced structural changes of gold cations from two- to three-dimensions. Phys. Chem. Chem. Phys. 2010, 12, 3038-3043.

20

Bongiorno, A.; Landman, U. Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys. Rev. Lett. 2005, 95, 106102.

21

Xu, Z.; Xiao, F. S.; Purnell, S. K.; Alexeev, O.; Kawl, S.; Deutsch, S. E.; Gates, B. C. Size-dependent catalytic activity of supported metal-clusters. Nature 1994, 372, 346-348.

22

Ajo, H. M.; Bondzie, V. A.; Campbell, C. T. Propene adsorption on gold particles on TiO2(110). Catal. Lett. 2002, 78, 359-368.

23

Nijhuis, T. A.; Sacaliuc, E.; Beale, A. M.; van der Eerden, A. M. J.; Schouten, J. C.; Weckhuysen, B. M. Spectroscopic evidence for the adsorption of propene on gold nanoparticles during the hydro-epoxidation of propene. J. Catal. 2008, 258, 256-264.

24

Yang, X. F.; Wang, A. Q.; Wang, X. D.; Zhang, T.; Han, K.; Li, J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde. J. Phys. Chem. C 2009, 113, 20918-20926.

25

Yang, X. F.; Wang, A. Q.; Wang, Y. L.; Zhang, T.; Li, J. Unusual selectivity of gold catalysts for hydrogenation of 1, 3-butadiene toward cis-2-butene: A joint experimental and theoretical investigation. J. Phys. Chem. C 2010, 114, 3131-3139.

26

Pei, Y.; Shao, N.; Gao, Y.; Zeng, X. C. Investigating active site of gold nanoparticle Au55(PPh3)12Cl6 in selective oxidation. ACS Nano 2010, 4, 2009-2020.

27

Epling, W. S.; Peden, C. H. F.; Henderson, M. A.; Diebold, U. Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 1998, 412, 333-343.

28

Wang, H. Y.; Schneider, W. F. Nature and role of surface carbonates and bicarbonates in CO oxidation over RuO2. Phys. Chem. Chem. Phys. 2010, 12, 6367-6374.

29

Furche, F.; Ahlrichs, R.; Weis, P.; Jacob, C.; Gilb, S.; Bierweiler, T.; Kappes, M. M. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 2002, 117, 6982-6990.

30

Häkkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H. J.; Wang, L. S. On the electronic and atomic structures of small AuN- (N = 4-14) clusters: A photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 2003, 107, 6168-6175.

31

Ji, M.; Gu, X.; Li, X.; Gong, X.; Li, J.; Wang, L. S. Experimental and Theoretical Investigation of the Electronic and Geometrical Structures of the Au32 Cluster. Angew. Chem. Int. Ed. 2005, 44, 7119-7123.

32

Wells, D. H.; Delgass, W. N.; Thomson, K. T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: A DFT study. J. Am. Chem. Soc. 2004, 126, 2956-2962.

33

Vayssilov, G. N.; van Santen, R. A. Catalytic activity of titanium silicalites: A DFT study. J. Catal. 1998, 175, 170-174.

34

Sinclair, P. E.; Catlow, C. R. A. Quantum chemical study of the mechanism of partial oxidation reactivity in titanosilicate catalysts: Active site formation, oxygen transfer, and catalyst deactivation. J. Phys. Chem. B 1999, 103, 1084-1095.

35

Munakata, H.; Oumi, Y.; Miyamoto, A. A DFT study on peroxo-complex in titanosilicate catalyst: Hydrogen peroxide activation on titanosilicalite-1 catalyst and reaction mechanisms for catalytic olefin epoxidation and for hydroxylamine formation from ammonia. J. Phys. Chem. B 2001, 105, 3493-3501.

36

Joshi, A. M.; Delgass, W. N.; Thomson, K. T. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: A density functional theory study. J. Phys. Chem. B 2006, 110, 2572-2581.

37

Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252-255.

38

Lemire, C.; Meyer, R.; Shaikhutdinov, S.; Freund, H. J. Do quantum size effects control CO adsorption on gold nanoparticles? Angew. Chem. Int. Ed. 2004, 43, 118-121.

39

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688-1691.

40

Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932-934.

41

Lu, J.; Bravo-Suárez, J. J.; Takahashi, A.; Haruta, M.; Oyama, S. T. In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J. Catal. 2005, 232, 85-95.

42

Zemichael, F. W.; Palermo, A.; Tikhov, M. S.; Lambert, R. M. Propene epoxidation over K-promoted Ag/CaCO3 catalysts: The effect of metal particle size. Catal. Lett. 2002, 80, 93-98.

43

de Oliveira, A. L.; Wolf, A.; Schuth, F. Highly selective propene epoxidation with hydrogen/oxygen mixtures over titania-supported silver catalysts. Catal. Lett. 2001, 73, 157-160.

44

Roldan, A.; Ricart, J. M.; Illas, F. Origin of the size dependence of Au nanoparticles toward molecular oxygen dissociation. Theor. Chem. Acc. 2009, 123, 119-126.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 August 2010
Revised: 16 October 2010
Accepted: 17 November 2010
Published: 28 December 2010
Issue date: January 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Acknowledgements

Acknowledgements

The authors thank the referees for pointing out the two-step mechanism involving the OMME intermediate. This work was supported by the National Key Basic Research Special Foundation (NKBRSF) (Nos. 2007CB815200 and 2011CB932400) and the National Nature Science Foundation of China (NSFC) (No. 20933003). The calculations were performed by using supercomputers at the Computer Network Information Center, Chinese Academy of Sciences, Tsinghua National Laboratory for Information Science and Technology, and the Shanghai Supercomputing Center.

Return