Journal Home > Volume 4 , Issue 3

We have successfully fabricated a hybrid silicon–carbon nanostructured composite with large area (about 25.5 in2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of > 2000 mA·h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of > 98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon–carbon nanostructured composites for application in lithium ion batteries.


menu
Abstract
Full text
Outline
About this article

Hybrid Silicon-Carbon Nanostructured Composites as Superior Anodes for Lithium Ion Batteries

Show Author's information Po-Chiang Chen1Jing Xu1Haitian Chen2Chongwu Zhou2( )
Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos Angeles, CA90089USA
Ming-Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos Angeles, CA90089USA

Abstract

We have successfully fabricated a hybrid silicon–carbon nanostructured composite with large area (about 25.5 in2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of > 2000 mA·h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of > 98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon–carbon nanostructured composites for application in lithium ion batteries.

Keywords: lithium ion batteries, carbon nanofibers, Amorphous silicon, hybrid nanostructured composite

References(33)

1

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104, 4245–4270.

2

Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

3

Yoon, J.; Baca, A. J.; Park, S. -I.; Elvikis, P.; Geddes, J. B., III; Li, L.; Kim, R. H.; Xiao, J.; Wang, S.; Kim, T. -H.; Motala, M. J.; Ahn, B. Y.; Duoss, E. B.; Lewis, J. A.; Nuzzo, R. G.; Ferreira, P. M.; Huang, Y.; Rockett, A.; Rogers, J. A. Ultrathinsilicon solar microcells for semitransparent, mechanically flexible and microconcentratormoduledesigns. Nat. Mater. 2008, 7, 907–915.

4

Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652–657.

5

Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo J. R.; Awater, H. A.; Lewis, N. S. Energy-conversion properties of vapor–liquid–solid-grown silicon wire-array photocathodes. Science 2010, 327, 185–187.

6

Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Three-dimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.

7

Liu, J.; Cao, G.; Yang, Z.; Wang, D.; Dubois, D.; Zhou, X.; Graff, G. L.; Pederson, L. R.; Zhang, J. -G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.

8

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

9

Jiang, C.; Hosono, E.; Zhou, H. E. Nanomaterials for lithium ion batteries. Nano Today 2006, 1, 28–33.

10

Poizot. P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, T. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

11

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, T. -M.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

12

Chan, C. K.; Peng, H.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

13

Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

14

Song, T.; Xia, J.; Lee J. -H.; Lee, D. H.; Kwon, M. -S.; Choi, J. -M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. -C.; Rogers, J. A.; Paik, U. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

15

Cho, J. Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 4009–4014.

16

Kim, H.; Han, B.; Choo J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.

17

Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core–shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691

18

Kim, H; Seo, M.; Park, M. -H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2010, 49, 2146–2149.

19

Cui, L. F.; Hu, L. B.; Choi, J. K.; Cui, Y. Light-weight free-standing carbon nanotube–silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671–3678

20

Choi, J. W.; Hu, L. B.; Cui, L. F.; McDonough, J. R.; Cui, Y. Metal current collector-free freestanding silicon-carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J. Power Sources 2010, 195, 8311–8316

21

Zhou, S.; Liu, Z.; Wang, D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.

22

Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

23

Wang, L.; Ding, C. X.; Zhang, L. C.; Xu, H. W.; Zhang, D. W.; Cheng, T.; Chen, C. H. A novel carbon–silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sources 2010, 195, 5052–5056.

24

Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

25

Luo, Z.; Fan, D.; Liu, X.; Mao, H.; Yao, C.; Deng, Z. High performance silicon carbon composite anode materials for lithium ion batteries. J. Power Sources 2009, 189, 16–21.

26

Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Peres, J. -P.; Talaga, D.; Couzi, M.; Tarascon, J. -M. Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv. Funct. Mater. 2007, 17, 1765–1774.

27

Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

28

Baranchugov, V.; Markevich, E.; Pollak, E.; Salitra, G.; Aurbach, D. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 2007, 9, 796–800.

29

Lee, K. -L.; Jung, J. -Y.; Lee, S. -W.; Moon, H. -S.; Park, J. -W. Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery. J. Power Sources 2004, 130, 241–261.

30

Zaghib, K.; Tatsumi, K.; Abe, H.; Ohsaki, T.; Sawada, Y.; Higuchi, S. Optimization of the dimensions of vapor-grown carbon fiber for use as negative electrodes in lithium-ion rechargeable cells. J. Electrochem. Soc. 1998, 145, 210–215.

31

Takamura, T.; Ohara, S.; Uehar, M.; Suzuki, J.; Sekine, K. A vacuum deposited Si film having a Li extraction capacity over 2000 mA·h/g with a long cycle life. J. Power Sources 2004, 129, 96–100.

32

Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 2004, 136, 303–306.

33

Rong, J. P.; Masarapu, C.; Ni, J.; Zhang, Z. J.; Wei, B. Q. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 2010, 4, 4683–4690.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2010
Revised: 13 November 2010
Accepted: 13 November 2010
Published: 01 March 2011
Issue date: March 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Acknowledgements

Acknowledgements

We acknowledge financial support from the National Science Foundation (CCF 0726815 and CCF 0702204).

Return