Journal Home > Volume 4 , Issue 3

Nanopumps conducting fluids directionally through nanopores and nanochannels have attracted considerable interest for their potential applications in nanofiltration, water purification, and hydroelectric power generation. Here, we demonstrate by molecular dynamics simulations that an excited vibrating carbon nanotube (CNT) cantilever can act as an efficient and simple nanopump. Water molecules inside the vibrating cantilever are driven by centrifugal forces and can undergo a continuous flow from the fixed to free ends of the CNT. Further extensive simulations show that the pumping function holds good not only for a single-file water chain in a narrow (6, 6) CNT, but also for bulk-like water columns inside wider CNTs, and that the water flux increases monotonically with increasing diameter of the nanotube.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vibrating Carbon Nanotubes as Water Pumps

Show Author's information Hu QiuRong ShenWanlin Guo( )
Institute of Nano ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China

Abstract

Nanopumps conducting fluids directionally through nanopores and nanochannels have attracted considerable interest for their potential applications in nanofiltration, water purification, and hydroelectric power generation. Here, we demonstrate by molecular dynamics simulations that an excited vibrating carbon nanotube (CNT) cantilever can act as an efficient and simple nanopump. Water molecules inside the vibrating cantilever are driven by centrifugal forces and can undergo a continuous flow from the fixed to free ends of the CNT. Further extensive simulations show that the pumping function holds good not only for a single-file water chain in a narrow (6, 6) CNT, but also for bulk-like water columns inside wider CNTs, and that the water flux increases monotonically with increasing diameter of the nanotube.

Keywords: carbon nanotube, nanofluidics, Nanopump, centrifugal forces, water dynamics

References(34)

1

Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

2

Yuan, Q. Z.; Zhao, Y. P. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 6374–6376.

3

Zhao, Y. C.; Song, L.; Deng, K.; Liu, Z.; Zhang, Z. X.; Yang, Y. L.; Wang, C.; Yang, H. F.; Jin, A. Z.; Luo, Q.; Gu, C. Z.; Xie, S. S.; Sun, L. F. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 2008, 20, 1772–1776.

4

Service, R. F. Desalination freshens up. Science 2006, 313, 1088–1090.

5

Zambrano, H. A.; Walther, J. H.; Koumoutsakos, P.; Sbalzarini, I. F. Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett. 2009, 9, 66–71.

6

Longhurst, M. J.; Quirke, N. Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano Lett. 2007, 7, 3324–3328.

7

Dai, Y.; Tang, C.; Guo, W. Simulation studies of a "nanogun" based on carbon nanotubes. Nano Res. 2008, 1, 176–183.

8

Wang, Q. Atomic transportation via carbon nanotubes. Nano Lett. 2009, 9, 245–249.

9

Duan, W. H.; Wang, Q. Water transport with a carbon nanotube pump. ACS Nano 2010, 4, 2338–2344.

10

Chang, T. Dominoes in carbon nanotubes. Phys. Rev. Lett. 2008, 101, 175501.

11

Chen, M.; Zang, J.; Xiao, D.; Zhang, C.; Liu, F. Nanopumping molecules via a carbon nanotube. Nano Res. 2009, 2, 938–944.

12

Zuo, G.; Shen, R.; Ma, S.; Guo, W. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel. ACS Nano 2010, 4, 205–210.

13

Gong, X. J.; Li, J. Y.; Lu, H. J.; Wan, R. Z.; Li, J. C.; Hu, J.; Fang, H. P. A charge-driven molecular water pump. Nature Nanotech. 2007, 2, 709–712.

14

Sazonova, V.; Yaish, Y.; Ustunel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.

15

Garcia-Sanchez, D.; Paulo, A. S.; Esplandiu, M. J.; Perez-Murano, F.; Forro, L.; Aguasca, A.; Bachtold, A. Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 2007, 99, 085501.

16

Poncharal, P.; Wang, Z. L.; Ugarte, D.; de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.

17

Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

18

Babic, B.; Furer, J.; Sahoo, S.; Farhangfar, S.; Schonenberger, C. Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes. Nano Lett. 2003, 3, 1577–1580.

19

Jensen, K.; Kim, K.; Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 2008, 3, 533–537.

20

Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. Nanotube radio. Nano Lett. 2007, 7, 3508–3511.

21

Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151, 283–312.

22

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

23

MacKerell, A. D. Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L. Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616.

24

Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.

25

Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh ewald method. J. Chem. Phys. 1995, 103, 8577–8593.

26

Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190.

27

de Groot, B. L.; Grubmuller, H. Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 2001, 294, 2353–2357.

28

Qiu, H.; Ma, S.; Shen, R.; Guo, W. Dynamic and energetic mechanisms for the distinct permeation rate in AQP1 and AQP0. Biochim. Biophys. Acta. 2010, 1798, 318–326.

29

Holt, J. K. Carbon nanotubes and nanofluidic transport. Adv. Mater. 2009, 21, 3542–3550.

30

Holt, J. K.; Park, H. G.; Wang, Y.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.

31

Jensen, M. O.; Tajkhorshid, E.; Schulten, K. Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 2003, 85, 2884–2899.

32

Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.

33

Thomas, J. A.; McGaughey, A. J. H. Water flow in carbon nanotubes: Transition to subcontinuum transport. Phys. Rev. Lett. 2009, 102, 184502.

34

Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 2008, 112, 1427–1434.

Video
nr-4-3-284_ESM_Movie.avi
File
nr-4-3-284_ESM.pdf (298.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2010
Revised: 13 November 2010
Accepted: 13 November 2010
Published: 01 March 2011
Issue date: March 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Acknowledgements

Acknowledgements

This work was supported by the 973 Program (No. 2007CB936204), National and Jiangsu Province National Science Foundation (NSF) (Nos. 10732040, 10802037, 30970557, and BK2008042) of China, and Nanjing University of Aeronautics and Astronautics Funds (No. BCXJ08-02). The authors thank Drs. Yitao Dai, Chun Tang, and Zhuhua Zhang for helpful discussions.

Return