Journal Home > Volume 4 , Issue 2

Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at −196 ℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10−4 molCO·gAu−1·s−1 at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2–12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10−4 to 7.2 × 10−4 molCO·gAu−1·s−1, at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition–precipitation or co-precipitation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Gold Supported on Metal Oxides for Carbon Monoxide Oxidation

Show Author's information Sonia A. C. Carabineiro1( )Nina Bogdanchikova2Miguel Avalos-Borja2,Alexey Pestryakov3Pedro B. Tavares4Jose L. Figueiredo1
Laboratório de Catálise e MateriaisAssociate Laboratory LSRE/LCMDepartamento de Engenharia QuímicaFaculdade de EngenhariaUniversidade do Porto4200-465PortoPortugal
Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoCarretera Tijuana-EnsenadaEnsenadaBaja California22800México
Tomsk Polytechnic University30Lenin AvenueTomsk634050Russia
Universidade de Trás-os-Montes e Alto DouroCentro de Química–Vila RealDepartamento de Química5001-911Vila Real, Portugal

On leave at Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), San Luis Potosi, S.L.P., México

Abstract

Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at −196 ℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10−4 molCO·gAu−1·s−1 at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2–12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10−4 to 7.2 × 10−4 molCO·gAu−1·s−1, at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition–precipitation or co-precipitation.

Keywords: Gold, X-ray diffraction, oxidation, heterogeneous catalysis, electron diffraction

References(67)

1

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

2

Haruta, M.; Date, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A: Gen. 2001, 222, 427–437.

3

Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002, 6, 102–115.

4

Haruta, A. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87.

5

Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism, and applications. Gold. Bull. 2004, 37, 27–36.

6

Bond, G. C.; Thompson, D. T. Gold-catalysed oxidation of carbon monoxide. Gold. Bull. 2000, 33, 41–51.

7

Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, United Kingdom, 2006.

DOI
8

Carabineiro, S. A. C.; Thompson, D. T. Catalytic Applications for Gold Nanotechnology. In Nanocatalysis. Springer-Verlag: Berlin, Heidelberg, New York, 2007.

9

Carabineiro, S. A. C.; Thompson, D. T. Gold Catalysis. In Gold: Science and Applications. CRC Press, Taylor and Francis Group: Boca Raton, London, New York, 2010.

10

Hutchings, G. J.; Haruta, M. A golden age of catalysis: A perspective. Appl. Catal. A: Gen. 2005, 291, 2–5.

11

Date, M.; Imai, H.; Tsubota, S.; Haruta, M. In situ measurements under flow condition of the CO oxidation over supported gold nanoparticles. Catal. Today 2007, 122, 222–225.

12

Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0-degrees-C. Chem. Lett. 1987, 405–408.

13

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

14

Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936.

15

Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO oxidation catalyzed by supported gold: A tabular summary of the literature. Catal. Lett. 2009, 130, 108–120.

16

Iizuka, Y.; Fujiki, H.; Yamauchi, N.; Chijiiwa, T.; Arai, S.; Tsubota, S.; Haruta, M. Adsorption of CO on gold supported on TiO2. Catal. Today 1997, 36, 115–123.

17

Iizuka, Y.; Tode, T.; Takao, T.; Yatsu, K. I.; Takeuchi, T.; Tsubota, S.; Haruta, M. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J. Catal. 1999, 187, 50–58.

18

Park, E. D.; Lee, J. S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal. 1999, 186, 1–11.

19

Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122.

20

Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au catalysts for low temperature CO oxidation. J. Catal. 2003, 216, 425–432.

21

Zhong, Z. Y.; Lin, J. Y.; Teh, S. P.; Teo, J.; Dautzenberg, F. M. A rapid and efficient method to deposit gold particles on catalyst supports and its application for CO oxidation at low temperatures. Adv. Funct. Mater. 2007, 17, 1402–1408.

22

Perkas, N.; Zhong, Z.; Grinblat, J.; Gedanken, A. Deposition of gold particles on mesoporous catalyst supports by sono-chemical method, and their catalytic performance for CO oxidation. Catal. Lett. 2008, 120, 19–24.

23

Zhu, Y. H.; Li, W.; Zhou, Y. X.; Lu, X. H.; Feng, X.; Yang, Z. H. Low-temperature CO oxidation of gold catalysts loaded on mesoporous TiO2 whisker derived from potassium dititanate. Catal. Lett. 2009, 127, 406–410.

24

Tanielyan, S. K.; Augustine, R. L. Effect of catalyst pretreatment on the oxidation of carbon-monoxide over coprecipitated gold catalysts. Appl. Catal. A: Gen. 1992, 85, 73–87.

25

Hutchings, G. J.; Siddiqui, M. R. H.; Burrows, A.; Kiely, C. J.; Whyman, R. High-activity Au/CuO–ZnO catalysts for the oxidation of carbon monoxide at ambient temperature. J. Chem Soc., Faraday Trans. 1997, 93, 187–188.

26

Solsona, B. E.; Garcia, T.; Jones, C.; Taylor, S. H.; Carley, A. F.; Hutchings, G. J. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Appl. Catal. A: Gen. 2006, 312, 67–76.

27

Ando, M.; Kobayashi, T.; Haruta, M. Combined effects of small gold particles on the optical gas sensing by transition metal oxide films. Catal. Today 1997, 36, 135–141.

28

Avgouropoulos, G.; Papavasiliou, J.; Tabakova, T.; Idakiev, V.; Ioannides, T. A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction. Chem. Eng. J. 2006, 124, 41–45.

29

Pillai, U. R.; Deevi, S. Room temperature oxidation of carbon monoxide over copper oxide catalyst. Appl. Catal. B: Environ. 2006, 64, 146–151.

30

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and carbon-monoxide. J. Catal. 1989, 115, 301–309.

31

Zhou, S. H.; Yin, H. F.; Schwartz, V.; Wu, Z. L.; Mullins, D.; Eichhorn, B.; Overbury, S. H.; Dai, S. In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. ChemPhysChem 2008, 9, 2475–2479.

32

Radwan, N. R. E.; Ei-Shall, M. S.; Hassan, H. M. A. Synthesis and characterization of nanoparticle CO3O4, CuO, and NiO catalysts prepared by physical and chemical methods to minimize air pollution. Appl. Catal. A: Gen. 2007, 331, 8–18.

33

Zhang, W. X.; Tao, Y. G.; Jia, M. J.; Wu, T. H.; Li, X. M. Catalytic oxidation of CO at ambient temperature and humidity on Au/NiO prepared by using different methods. Chem. J. Chin. Univ. 1998, 19, 1317–1319.

34

Wang, G. Y.; Zhang, W. X.; Jiang, D. Z.; Wu, T. H. CO oxidation over Au/MeOx at ambient temperature and humidity. Acta Chim. Sinica 2000, 58, 1557–1562.

35

Wang, G. Y.; Zhang, W. X.; Cui, Y. C.; Lian, H. L.; Jiang, D. Z.; Wu, T. H. Effect of H2O on catalytic performance of MOx, and Au/MOx catalysts for CO oxidation. Chin. J. Catal. 2001, 22, 408–410.

36

Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnol. 2006, 17, 979–983.

37

Guzman, J.; Corma, A. Nanocrystalline and mesostructured Y2O3 as supports for gold catalysts. Chem. Commun. 2005, 743–745.

38

Guzman, J.; Carrettin, S.; Fierro-Gonzalez, J. C.; Hao, Y. L.; Gates, B. C.; Corma, A. CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed. 2005, 44, 4778–4781.

39

Russo, N.; Fino, D.; Saracco, G.; Specchia, V. Supported gold catalysts for CO oxidation. Catal. Today 2006, 117, 214–219.

40

Fierro-Gonzalez, J. C.; Bhirud, V. A.; Gates, B. C. A highly active catalyst for CO oxidation at 298 K: Mononuclear Au-III complexes anchored to La2O3 nanoparticles. Chem. Commun. 2005, 5275–5277.

41

Mihaylov, M.; Ivanova, E.; Hao, Y.; Hadjiivanov, K.; Knozinger, H.; Gates, B. C. Gold supported on La2O3: Structure and reactivity with CO2 and implications for CO oxidation catalysis. J. Phys. Chem. C 2008, 112, 18973–18983.

42

Mihaylov, M.; Ivanova, E.; Hao, Y.; Hadjiivanov, K.; Gates, B. C.; Knozinger, H. Oxidation by CO2 of Au-0 species on La2O3-supported gold clusters. Chem. Commun. 2008, 175–177.

43

Grisel, R. J. H.; Nieuwenhuys, B. E. Selective oxidation of CO over supported Au catalysts. J. Catal. 2001, 199, 48–59.

44

Gasior, M.; Grzybowska, B.; Samson, K.; Ruszel, A.; Haber, J. Oxidation of CO and C3 hydrocarbons on gold dispersed on oxide supports. Catal. Today 2003, 9192, 131–135.

45

Szabo, E. G.; Hegedus, M.; Szegedi, A.; Sajo, I.; Margitfalvi, J. L. CO oxidation over Au/Al2O3 catalysts modified by MgO. React. Kinet. Catal. Lett. 2005, 86, 339–345.

46

Bowker, M.; Nuhu, A.; Soares, J. High activity supported gold catalysts by incipient wetness impregnation. Catal. Today 2007, 122, 245–247.

47

Sunagawa, Y.; Yamamoto, K.; Takahashi, H.; Muramatsu, A. Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation. Catal. Today 2008, 132, 81–87.

48

Carabineiro, S. A. C.; Silva, A. M. T.; Dražić, G.; Tavares, P. B.; Figueiredo, J. L. Gold nanoparticles on ceria supports for the oxidation of carbon monoxide. Catal. Today 2010, 154, 21–30.

49

Carabineiro, S. A. C.; Bastos, S. S. T.; Órfão, J. J. M.; Pereira, M. F. R.; Delgado, J. J.; Figueiredo, J. L. Exotemplated ceria catalysts with gold for CO oxidation. Appl. Catal. A: Gen. 2010, 381, 150–160.

50

Carabineiro, S. A. C.; Machado, B. F.; Bacsa, R. R.; Serp, P.; Dražić, G.; Faria, J. L.; Figueiredo, J. L. Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. J. Catal. 2010, 273, 191–198.

51

Carabineiro, S. A. C.; Silva, A. M. T.; Dražić, G.; Tavares, P. B.; Figueiredo, J. L. Effect of chloride on the sinterization of Au/CeO2 catalysts. Catal. Today 2010, 154, 293–302.

52

Santos, V. P.; Carabineiro, S. A. C.; Tavares, P. B.; Pereira, M. F. R.; Órfão, J. J. M.; Figueiredo, J. L. Oxidation of CO, ethanol, and toluene over TiO2 supported noble metal catalysts. Appl. Catal. B: Environ. 2010, 99, 198–205.

53

Carabineiro, S. A. C.; Bastos, S. S. T.; Orfao, J. J. M.; Pereira, M. F. R.; Delgado, J. J.; Figueiredo, J. L. Carbon monoxide oxidation catalysed by exotemplated manganese oxides. Catal. Lett. 2010, 134, 217–227.

54
Available from: http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html.
55
Kraus, W.;Nolze, G. PowderCell for Windows. http://ccp14.minerals.csiro.au/ccp/web-mirrors/powdcell/av/v1/powder/ecell.html.
56

Margitfalvi, J. L.; Fasi, A.; Hegedus, M.; Lonyi, F.; Gobolos, S.; Bogdanchikova, N. Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation. Catal. Today 2002, 72, 157–169.

57

Guzman, J.; Gates, B. C. Catalysis by supported gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am Chem. Soc. 2004, 126, 2672–2673.

58

Szabo, E. G.; Tompos, A.; Hegedus, M.; Szegedi, A.; Margitfalvi, J. L. The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation. Appl. Catal. A: Gen. 2007, 320, 114–121.

59

Choudhary, V. R.; Mulla, S. A. R.; Uphade, B. S. Oxidative coupling of methane over supported La2O3 and La-promoted MgO catalysts: Influence of catalyst−support interactions. Ind. Eng. Chem. Res. 1997, 36, 2096–2100.

60

Ko, E. Y.; Park, E. D.; Seo, K. W.; Lee, H. C.; Lee, D.; Kim, S. A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catal. Today 2006, 116, 377–383.

61

Carabineiro, S. A. C.; Silva, A. M. T.; Dražić, G.; Figueiredo, J. L. Analytical electron microscopy of gold nanoparticles on ceria, titania, and ceria-titania materials. In Microscopy: Science, Technology, Applications and Education, Formatex Microscopy Book series. Formatex Research Center, 2010.

62

Sakurai, H.; Tsubota, S.; Haruta, M. Hydrogenation of CO over gold supported on metal oxides. Appl. Catal. A: Gen. 1993, 102, 125–136.

63

Arena, F.; Frusteri, F.; Parmaliana, A.; Giordano, N. On the reduction of NiO forms in magnesia supported catalysts. React. Kinet. Catal. Lett. 1990, 42, 121–126.

64

Parmaliana, A.; Arena, F.; Frusteri, F.; Giordano, N. Temperature-programmed reduction study of NiO–MgO interactions in magnesia-supported Ni catalysts and NiO–MgO physical mixture. J. Chem Soc., Faraday Trans. 1990, 86, 2663–2669.

65

Kotsev, N. K.; Ilieva, L. I. Determination of nonstoichiometric oxygen in NiO by temperature-programmed reduction. Catal. Lett. 1993, 18, 173–176.

66

Li, C. P.; Chen, Y. W. Temperature-programmed-reduction studies of nickel-oxide alumina catalysts—Effects of the preparation method. Thermochim. Acta 1995, 256, 457–465.

67

Bellido, J. D. A.; Assaf, E. M. Effect of the Y2O3–ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Appl. Catal. A: Gen. 2009, 352, 179–187.

File
nr-4-2-180_ESM.pdf (840.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 September 2010
Revised: 07 October 2010
Accepted: 28 October 2010
Published: 01 February 2011
Issue date: February 2011

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors thank Fundação para a Ciência e a Tecnologia (FCT), Portugal, for financial support (CIENCIA 2007 program for Sónia Carabineiro (SAC)), and project PTDC/EQU-ERQ/101456/2008, financed by Fundação para a Ciência e Tecnologia (FCT) and FEDER in the context of Programme COMPETE. Funds from Mexican Consejo Nacional de Ciencia y Tecnologia (CONACYT) grant No. 79062 and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIT-UNAM) grant No. IN 100908 are also acknowledged. The authors thank Laboratorio de Investigaciones en Nanociencias y Nanotecnologia (LINAN) laboratory from IPICyT for providing microscopy and simulation services for this work.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return