Journal Home > Volume 3 , Issue 12

The growth and characterization of single-crystalline thin films of topological insulators (TIs) is an important step towards their possible applications. Using in situ scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), we show that moderately thick Sb2Te3 films grown layer-by-layer by molecular beam epitaxy (MBE) on Si(111) are atomically smooth, single-crystalline, and intrinsically insulating. Furthermore, these films were found to exhibit a robust TI electronic structure with their Fermi energy lying within the energy gap of the bulk that intersects only the Dirac cone of the surface states. Depositing Cs in situ moves the Fermi energy of the Sb2Te3 films without changing the electronic band structure, as predicted by theory. We found that the TI behavior is preserved in Sb2Te3 films down to five quintuple layers (QLs).


menu
Abstract
Full text
Outline
About this article

Atomically Smooth Ultrathin Films of Topological Insulator Sb2Te3

Show Author's information Guang Wang1Xiegang Zhu1Jing Wen1Xi Chen1Ke He2Lili Wang2Xucun Ma2Ying Liu3,4,5Xi Dai2Zhong Fang2Jinfeng Jia1,4( )Qikun Xue1,2
Key Lab for AtomicMolecular and NanoscienceDepartment of PhysicsTsinghua UniversityBeijing100084China
Institute of Physicsthe Chinese Academy of SciencesBeijing100190China
Department of PhysicsThe Pennsylvania State UniversityPennsylvania16802USA
Department of PhysicsShanghai Jiaotong UniversityShanghai200240China
epartment of Physics, Zhejiang University, HangzhouChina

Abstract

The growth and characterization of single-crystalline thin films of topological insulators (TIs) is an important step towards their possible applications. Using in situ scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), we show that moderately thick Sb2Te3 films grown layer-by-layer by molecular beam epitaxy (MBE) on Si(111) are atomically smooth, single-crystalline, and intrinsically insulating. Furthermore, these films were found to exhibit a robust TI electronic structure with their Fermi energy lying within the energy gap of the bulk that intersects only the Dirac cone of the surface states. Depositing Cs in situ moves the Fermi energy of the Sb2Te3 films without changing the electronic band structure, as predicted by theory. We found that the TI behavior is preserved in Sb2Te3 films down to five quintuple layers (QLs).

Keywords: electronic structure, scanning tunneling microscopy, molecular beam epitaxy, angle-resolved photoemission spectroscopy, Topological insulator

References(40)

1

Casto Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

2

Bernevig, B. A.; Zhang, S. C. Quantum spin Hall effect. Phys. Rev. Lett. 2006, 96, 106802.

3

König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

4

Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803.

5

Moore, J. E.; Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 2007, 75, 121306.

6

Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

7

Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2007, 78, 195424.

8

Qi, X. L.; Li, R. D.; Zang, J. D.; Zhang, S. C. Inducing a magnetic monopole with topological surface states. Science 2009, 323, 1184–1187.

9

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3, and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

10

Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970–974.

11

Hsieh, D.; Xia, Y.; Wray, L.; Qian, D.; Pal, A.; Dil, J. H.; Osterwalder, J.; Meier, F.; Bihlmayer, G.; Kane, C. L.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Observation of unconventional quantum spin textures in topological insulators. Science 2009, 323, 919–922.

12

Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

13

Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z. X. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

14

Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A tunable topological insulator in the spin helical Dirac transport regime. Nature 2009, 460, 1101–1105.

15

Hor, Y. S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J. G.; Yazdani, A.; Hasan, M. Z.; Ong, N. P.; Cava, R. J. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 2009, 79, 195208.

16

Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Meier, F.; Dil, J. H.; Osterwalder, J.; Patthey, L.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 2009, 103, 146401.

17
Xia, Y.; Qian, D.; Hsieh, D.; Shankar, R.; Lin, H.; Bansil, A.; Fedorov, A. V.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Topological control: Systematic control of topological insulator Dirac fermion density on the surface of Bi2Te3. Preprint at http://arxiv.org/abs/0907.3089 (2009).
18

Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y.; Shen, S. Q.; Niu, Q.; Qi, X. L.; Zhang, S. C.; Ma, X. C.; Xue, Q. K. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

19

Li, Y. Y.; Wang, G.; Zhu, X. G.; Liu, M. H.; Ye, C.; Chen, X.; Wang, Y. Y.; He, K.; Wang, L. L.; Ma, X. C.; Zhang, H. J.; Dai, X.; Fang, Z.; Liu, Y.; Qi, X. L.; Jia, J. F.; Zhang, S. C.; Xue, Q. K. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv. Mater. 2010, 22, 4002–4007.

20

Urazhdin, S.; Bilc, D.; Tessmer, S. H.; Mahanti, S. D.; Kyratsi, T.; Kanatzidis, M. G. Scanning tunneling microscopy of defect states in the semiconductor Bi2Se3. Phys. Rev. B 2002, 66, 161306.

21

Urazhdin, S.; Bilc, D.; Tessmer, S. H.; Mahanti, S. D.; Kyratsi, T.; Kanatzidis, M. G. Surface effects in layered semiconductors Bi2Se3 and Bi2Te3. Phys. Rev. B 2004, 69, 085313.

22

Zhang, T.; Cheng, P.; Chen, X.; Jia, J. F.; Ma, X. C.; He, K.; Wang, L. L.; Zhang, H. J.; Dai, X.; Fang, Z.; Xie, X. C.; Xue, Q. K. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 2009, 103, 266803.

23

Zhang, G. H.; Qin, H. J.; Teng, J.; Guo, J. D.; Guo, Q. L.; Dai, X.; Fang, Z.; Wu, K. H. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 2009, 95, 053114.

24

Roushan, P.; Seo, J.; Parker, C. V.; Hor, Y. S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M. Z.; Cava, R. J.; Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature 2009, 460, 1106–1109.

25

Alpichshev, Z.; Analyits, J. G.; Chu, J. H.; Fisher, I. R.; Chen, Y. L.; Shen, Z. X.; Fang, A.; Kapitulnik, A. STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 2010, 104, 016401.

26

Cheng, P.; Song, C. L.; Zhang, T.; Zhang, Y. Y.; Wang, Y. L.; Jia, J. F.; Wang, J.; Wang, Y. Y.; Zhu, B. F.; Chen, X.; Ma, X. C.; He, K.; Wang, L. L.; Dai, X.; Fang, Z.; Xie, X. C.; Qi, X. L.; Liu, C. X.; Zhang, S. C.; Xue, Q. K. Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 2010, 105, 076801.

27
Abrikosov, N.; Poretskaya, L.; Ivanova, I. Investigation of the Sb–Te system. Zh. Neorg. Khim. 1959, 4(11), 2525–2531 (in Russian). TR: Russ. J. Inorganic Chem. . 1959, 4(11), 1163–1166.
28

Horak, J.; Tichy, L.; Lostak, P.; Vasko, A. Lattice-defects in iodine-doped Sb2Te3 and Bi2Te3 crystals. Cryst. Latt. Def. 1976, 6, 233–238.

29

Horak, J.; Cermak, K.; Koudelka, L. Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 1986, 47, 805–809.

30

Simon, G.; Eichler, W. Y. Galvanomagnetische und thermoelektrische transportuntersuchungen an Sb2Te3. Phys. Status Solidi B 1981, 103, 289–295.

31

Stordeur, M.; Simon, G. Investigation of the weak-field charge transport in semiconducting V2–Ⅵ3 compounds with trigonal symmetry Ⅱ. Interpretation of the weak-field charge transport in Sb2Te3 single crystals. Phys. Status Solidi B 1984, 124, 799–806.

32

Chien, Y. J.; Zhou, Z. H.; Uher, C. Growth and transport properties of Sb2−xVxTe3 thin films on sapphire substrates. J. Cryst. Growth 2005, 283, 309–314.

33

Venkatasubramanian, R.; Colpitts, T.; Watko, E.; Lamvik, M.; EI-Masry, N. MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications. J. Cryst. Growth 1997, 170, 817–821.

34

Iwata, Y.; Kobayashi, H.; Kikuchi, S.; Hatta, E.; Mukasa, K. In situ reflection high-energy electron diffraction (RHEED) observation of Bi2Te3/Sb2Te3 multilayer film growth. J. Cryst. Growth 1999, 203, 125–130.

35

Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.

36
Chien, Y. J. Transition metal-doped Sb2Te3 and Bi2Te3 diluted magnetic semiconductors. Ph. D. Dissertation, University of Michigan, USA, 2007.
37

Li, J. L.; Jia, J. F.; Liang, X. J.; Liu, X.; Wang, J. Z.; Xue, Q. K.; Li, Z. Q.; Tse, J. S.; Zhang, Z. Y.; Zhang, S. B. Spontaneous assembly of perfectly ordered identical-size nanocluster arrays. Phys. Rev Lett. 2002, 88, 066101.

38

Xue, Q. K.; Hashizume, T.; Sakurai, T. Scanning tunneling microscopy of Ⅲ-Ⅴ compound semiconductor (001) surfaces. Prog. Surf. Sci. 1997, 56, 1–131.

39

Guo, Y.; Zhang, Y. F.; Bao, X. Y.; Han, T. Z.; Tang, Z.; Zhang, L. X.; Zhu, W. G.; Wang, E. G.; Niu, Q.; Qiu, Z. Q.; Jia, J. F.; Zhao, Z. X.; Xue, Q. K. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917.

40

Jia, J. F.; Li, S. C.; Zhang, Y. F.; Xue, Q. K. Quantum size effects induced novel properties in two-dimensional electronic systems: Pb thin films on Si(111). J. Phys. Soc. Jpn. 2007, 76, 082001.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 August 2010
Revised: 10 October 2010
Accepted: 17 October 2010
Published: 10 November 2010
Issue date: December 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC) and the National Basic Research Program of the Ministry of Science and Technology of China (MOST). Work at Pennsylvania State University is supported by the National Science Foundation (NSF) under Grant No. DMR 0908700.

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return