Journal Home > Volume 4 , Issue 1

Mesoporous nanocrystal clusters of anatase TiO2 with large surface area and enhanced photocatalytic activity have been successfully synthesized. The synthesis involves the self-assembly of hydrophobic TiO2 nanocrystals into submicron clusters, coating of these clusters with a silica layer, thermal treatment to remove organic ligands and improve the crystallinity of the clusters, and finally removing silica to expose the mesoporous catalysts. With the help of the silica coating, the clusters not only maintain their small grain size but also keep their mesoporous structure after calcination at high temperatures (with BET surface area as high as 277 m2/g). The etching of SiO2 also results in the clusters having high dispersity in water. We have been able to identify the optimal calcination temperature to produce TiO2 nanocrystal clusters that possess both high crystallinity and large surface area, and therefore show excellent catalytic efficiency in the decomposition of organic molecules under illumination by UV light. Convenient doping with nitrogen converts these nanocrystal clusters into active photocatalysts in both visible light and natural sunlight. The strategy of forming well-defined mesoporous clusters using nanocrystals promises a versatile and useful method for designing photocatalysts with enhanced activity and stability.


menu
Abstract
Full text
Outline
About this article

Self-Assembly and Photocatalysis of Mesoporous TiO2 Nanocrystal Clusters

Show Author's information Qiao ZhangJi-Bong JooZhenda LuMichael DahlDiana Q. L. OliveiraMiaomiao YeYadong Yin( )
Department of ChemistryUniversity of California, RiversideCalifornia92521USA

Abstract

Mesoporous nanocrystal clusters of anatase TiO2 with large surface area and enhanced photocatalytic activity have been successfully synthesized. The synthesis involves the self-assembly of hydrophobic TiO2 nanocrystals into submicron clusters, coating of these clusters with a silica layer, thermal treatment to remove organic ligands and improve the crystallinity of the clusters, and finally removing silica to expose the mesoporous catalysts. With the help of the silica coating, the clusters not only maintain their small grain size but also keep their mesoporous structure after calcination at high temperatures (with BET surface area as high as 277 m2/g). The etching of SiO2 also results in the clusters having high dispersity in water. We have been able to identify the optimal calcination temperature to produce TiO2 nanocrystal clusters that possess both high crystallinity and large surface area, and therefore show excellent catalytic efficiency in the decomposition of organic molecules under illumination by UV light. Convenient doping with nitrogen converts these nanocrystal clusters into active photocatalysts in both visible light and natural sunlight. The strategy of forming well-defined mesoporous clusters using nanocrystals promises a versatile and useful method for designing photocatalysts with enhanced activity and stability.

Keywords: self-assembly, nanocrystals, photocatalysis, titanium dioxide, nitrogen doping, Mesoporous

References(48)

1

Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341-357.

2

Kamat, P. V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 1993, 93, 267-300.

3

Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water-treatment. Chem. Rev. 1993, 93, 671-698.

4

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278.

5

An, C. H.; Peng, S. N.; Sun, Y. G. Facile synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst. Adv. Mater. 2010, 22, 2570-2574.

6

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

7

Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environ. Sci. Tech. 1991, 25, 494-500.

8

Prairie, M. R.; Evans, L. R.; Stange, B. M.; Martinez, S. L. An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic-chemicals. Environ. Sci. Tech. 1993, 27, 1776-1782.

9

Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758.

10

Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.

11

Herrmann, J. M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115-129.

12

Tan, S. S.; Zou, L.; Hu, E. Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal. Today 2006, 115, 269-273.

13

Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J. Am. Chem. Soc. 2007, 129, 8406-8407.

14

Chen, X. B. Titanium dioxide nanomaterials and their energy applications. Chin. J. Catal. 2009, 30, 839-851.

15

Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244-255.

16

Ye, M.; Zhang, Q.; Hu, Y.; Ge, J.; Lu, Z.; He, L.; Chen, Z.; Yin, Y. Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. Chem. Eur. J. 2010, 16, 6243-6250.

17

Stafford, U.; Gray, K. A.; Kamat, P. V.; Varma, A. An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface. Chem. Phys. Lett. 1993, 205, 55-61.

18

Riegel, G.; Bolton, J. R. Photocatalytic efficiency variability in TiO2 particles. J. Phys. Chem. 1995, 99, 4215-4224.

19

Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545-4549.

20

Zhang, Z. Y.; Zuo, F.; Feng, P. Y. Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. J. Mater. Chem. 2010, 20, 2206-2212.

21

Zhang, L. W.; Fu, H. B.; Zhu, Y. F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 2008, 18, 2180-2189.

22

Yun, H. J.; Lee, H.; Joo, J. B.; Kim, W.; Yi, J. Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J. Phys. Chem. C 2009, 113, 3050-3055.

23

Ferrere, S.; Gregg, B. A. Photosensitization of TiO2 by [Fe(2, 2'-bipyridine-4, 4'-dicarboxylic acid)2(CN)2]: Band selective electron injection from ultra-short-lived excited states. J. Am. Chem. Soc. 1998, 120, 843-844.

24

Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. J. Am. Chem. Soc. 2004, 126, 14943-14949.

25

Argazzi, R.; Bignozzi, C. A.; Yang, M.; Hasselmann, G. M.; Meyer, G. J. Solvatochromic dye sensitized nanocrystalline solar cells. Nano Lett. 2002, 2, 625-628.

26

Granados-Oliveros, G.; Paez-Mozo, E. A.; Ortega, F. M.; Ferronato, C.; Chovelon, J. M. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl. Catal. B 2009, 89, 448-454.

27

Emeline, A. V.; Kuznetsov, V. N.; Rybchuk, V. K.; Serpone, N. Visible-light-active titania photocatalysts: The case of N-doped TiO2s-properties and some fundamental issues. Int. J. Photoenergy 2008, Article ID 258394.

28

Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505-516.

29

Choi, W. Y.; Termin, A.; Hoffmann, M. R. The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669-13679.

30

Li, F. B.; Li, X. Z.; Hou, M. F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control. Appl. Catal. B 2004, 48, 185-194.

31

Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett. 1986, 123, 126-128.

32

Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271.

33

Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908-4911.

34

Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243-2245.

35

Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891-2959.

36

Chen, D. H.; Huang, F. Z.; Cheng, Y. B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 2009, 21, 2206-2210.

37

Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N. G.; Kim, K.; Lee, W. I. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 2009, 21, 3668-3673.

38

Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650-6653.

39

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016-4022.

40

Lu, Z.; Ye, M.; Li, N.; Zhong, W.; Yin, Y. Self-assembled TiO2 nanocrystal clusters for selective enrichment of intact phosphorylated proteins. Angew. Chem. Int. Ed. 2010, 49, 1862-1866.

41

Lu, Z.; Duan, J.; He, L.; Hu, Y.; Yin, Y. Mesoporous TiO2 nanocrystal clusters for selective enrichment of phospho-peptides. Anal. Chem. 2010, 82, 7249-7258.

42

Lu, Z.; He, L.; Yin, Y. Superparamagnetic nanocrystal clusters for enrichment of low-abundance peptides and proteins. Chem. Commun. 2010, 46, 6174-6176.

43

Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 1999, 121, 1613-1614.

44

Stober, W.; Fink, A.; Bohn, E. Controlled growth of mono-disperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.

45

Gribb, A. A.; Banfield, J. F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 1997, 82, 717-728.

46

Zhang, H. Z.; Banfield, J. F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998, 8, 2073-2076.

47

Gao, Y. F.; Masuda, Y.; Peng, Z. F.; Yonezawa, T.; Koumoto, K. Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 2003, 13, 608-613.

48

Tang, H.; Prasad, K.; Sanjines, R.; Schmid, P. E.; Levy, F. Electrical and optical-properties of TiO2 anatase thin-films. J. Appl. Phys. 1994, 75, 2042-2047.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 July 2010
Revised: 24 August 2010
Accepted: 12 October 2010
Published: 10 November 2010
Issue date: January 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010 2010

Acknowledgements

Acknowledgements

Y. Y. thanks the University of California, Riverside, 3M Company, and the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. Financial support of this work was also provided by Basic Energy Sciences-U.S. Department of Energy and the National Science Foundation. Y. Y. is a Cottrell Scholar of the Research Corporation for Science Advancement. We thank Dr. Jimin Shen in Harbin Institute of Technology (China) for BET measurements. J. B. J. was partially supported by a National Research Foundation of Korea Grant funded by the Korean Government (No. NRF-2009-352-D00056).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return