Journal Home > Volume 3 , Issue 12

Single-crystalline Ag2Se complex nanostructures have been synthesized via a solvothermal route in which selenophene (C4H4Se) as a selenylation source reacts with AgNO3 at a temperature of 240 ℃. An orthorhombic phase β-Ag2Se nanostructure was identified by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The wettability of the as-synthesized β-Ag2Se nanostructure was studied by measurement of the water contact angle (CA). Static water CA values of over 150° were obtained, which can be attributed to the β-Ag2Se complex nanostructure having a combination of micro- and nanostructures. The superhydrophobic Ag2Se nanostructure may find applications in self-cleaning. Additionally, the photocatalytic activity of the as-synthesized β-Ag2Se nanostructure was evaluated by photodegradation of rhodamine B (RhB) dye under ultraviolet (UV) light irradiation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ag2Se Complex Nanostructures with Photocatalytic Activity and Superhydrophobicity

Show Author's information Huaqiang Cao1( )Yujiang Xiao1,2Yuexiang Lu1Jiefu Yin1Baojun Li1Shuisheng Wu1,3Xiaoming Wu1,4
Department of ChemistryTsinghua UniversityBeijing100084China
School of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093China

Abstract

Single-crystalline Ag2Se complex nanostructures have been synthesized via a solvothermal route in which selenophene (C4H4Se) as a selenylation source reacts with AgNO3 at a temperature of 240 ℃. An orthorhombic phase β-Ag2Se nanostructure was identified by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The wettability of the as-synthesized β-Ag2Se nanostructure was studied by measurement of the water contact angle (CA). Static water CA values of over 150° were obtained, which can be attributed to the β-Ag2Se complex nanostructure having a combination of micro- and nanostructures. The superhydrophobic Ag2Se nanostructure may find applications in self-cleaning. Additionally, the photocatalytic activity of the as-synthesized β-Ag2Se nanostructure was evaluated by photodegradation of rhodamine B (RhB) dye under ultraviolet (UV) light irradiation.

Keywords: photoluminescence, Nanostructures, photocatalytic, superhydrophobicity, silver selenide

References(51)

1

van Blaaderen, A. Materials scienceColloids get complex. Nature 2006, 439, 545–546.

2

Zhu, J.; Peng, H.; Marhall, A. F.; Barnett, D. M.; Nix, W. D.; Cui, Y. Formation of chiral branched nanowires by the Eshelby Twist. Nat. Nanotechnol. 2008, 3, 477–481.

3

Krishna, K. S.; Mansoori, U.; Selvi, N. R.; Eswaramoorthy, M. Form emerges from formless entities: Temperature-induced self-assembly and growth of ZnO nanoparticles into zeptoliter bowls and troughs. Angew. Chem. Int. Ed. 2007, 46, 5962–5965.

4

Hornyak, G. L.; Dutta, J.; Tibbals, H. F.; Rao, A. K. Introduction to Nanoscience; CRC Press: Boca Raton, USA, 2008.

DOI
5

Schoen, D. T.; Xie, C.; Cui, Y. Electrical switching and phase transformation in silver selenide nanowires. J. Am. Chem. Soc. 2007, 129, 4116–4117.

6

Cui, Y.; Chen, G.; Ren, J.; Shao, M.; Xie, Y.; Qian, Y. Solvothermal syntheses of β-Ag2Se crystals with novel morphologies. J. Solid State Chem. 2003, 172, 17–21.

7

Kobayashi, M. Review on structure and dynamic properties of silver chalcogenides. Solid State Ionics. 1990, 39, 121–149.

8

Wang, H.; Qi, L. Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers using a general sacrificial template and their application in electronic device fabrication. Adv. Funct. Mater. 2008, 18, 1249–1256.

9

Gates, B.; Mayers, B.; Wu, Y.; Sun, Y.; Cattle, B.; Yang, P.; Xia, Y. Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature. Adv. Funct. Mater. 2002, 12, 679–686.

DOI
10

Ma, D.; Zhang, M.; Xi, G.; Zhang, J.; Qian, Y. Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and chainlike β-Ag2Se nanorods inside carbonaceous nanotubes. Inorg. Chem. 2006, 45, 4845–4849.

11

Erbil, H. Y. Surface Chemistry of Solid and Liquid Interfaces; Blackwell Publishing: Oxford, UK, 2006.

DOI
12

Xia, Y. Nanomaterials at work in biomedical research. Nat. Mater. 2008, 7, 758–760.

13

Lahann, J. Environmental nanotechnology—Nanomaterials clean up. Nat. Nanotechnol. 2008, 3, 320–321.

14

Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336.

15

Wu, J.; Yi, T.; Shu, T.; Yu, M.; Zhou, Z.; Xu, M.; Zhou, Y.; Zhang, H.; Han, J.; Li, F.; Huang, C. A core-modified rubyrin with meso-aryl substituents and phenanthrene-fused pyrrole rings: A highly conjugated near-infrared dye and Hg2+ probe. Angew. Chem. Int. Ed. 2008, 47, 1063–1067.

16

Dorrer, C.; Rühe, J. Wetting of silicon nanograss: From superhydrophilic to superhydrophobic surfaces. Adv. Mater. 2008, 20, 159–163.

17

Ma, M.; Gupta, M.; Li, Z.; Zhai, L.; Gleason, K. K.; Cohen, R. E.; Rubner, M. F.; Rutledge, G. C. Decorated electrospun fibers exhibiting superhydrophobicity. Adv. Mater. 2007, 19, 255–259.

18

Zhu, Y.; Hu, D.; Wan, M.; Jiang, L.; Wei, Y. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Adv. Mater. 2007, 19, 2092–2096.

19

Xia, F.; Ge, H.; Hou, Y.; Sun, T.; Chen, L.; Zhang, G.; Jiang, L. Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv. Mater. 2007, 19, 2520–2524.

20

Kozicki, M. N.; Mitkova, M.; Zhu, J.; Park, M. Nanoscale phase separation in Ag–Ge–Se glasses. Microelectron. Eng. 2002, 63, 155–159.

21

Ogusu, K.; Kumagai, T.; Fujimori, Y. Thermal analysis and Raman scattering study on crystallization and structure of Agx(As0.4Se0.6)100–x glasses. J. Non-Cryst. Solids 2003, 324, 118–126.

22

Ge, J. -P.; Xu, S.; Liu, L. -P.; Li, Y. -D. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chem. Eur. J. 2006, 12, 3672–3677.

23

Yuan, J.; Li, W. -N.; Gomez, S.; Suib, S. L. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. J. Am. Chem. Soc. 2005, 127, 14184–14185.

24

Sun, S.; Yang, D.; Villers, D.; Zhang, G.; Sacher, E.; Dodelet, J. P. Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 2008, 20, 571–574.

25

Jiao, C. M.; Wang, Z. Z.; Ye, Z.; Hu, Y.; Fan, W. C. Flame retardation of ethylene-vinyl acetate copolymer using nano magnesium hydroxide and nano hydrotalcite. J. Fire Sci. 2006, 24, 47–64.

26

Zhang, S.; Fang, C.; Wei, W.; Jin, B.; Tian, Y.; Shen, Y.; Yang, J.; Gao, H. Synthesis and electrochemical behavior of crystalline Ag2Se nanotubes. J. Phys. Chem. C 2007, 111, 4168–4174.

27

Cao, H.; Qiu, X.; Luo, B.; Liang, Y.; Zhang, Y.; Tan, R.; Zhao, M.; Zhu, Q. Synthesis and room-temperature ultraviolet photoluminesence properties of zirconia nanowires. Adv. Funct. Mater. 2004, 14, 243–246.

28

Li, X.; Kikugawa, N.; Ye, J. A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation. Chem. Eur. J. 2009, 15, 3538–3545.

29

Kawahara, T.; Konishi, Y.; Tada, H.; Tohge, N.; Nishii, J.; Ito, S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. Ed. 2002, 41, 2811–2813.

DOI
30

Wu, J. M.; Zhang, T. W. Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure. J. Photochem. Photobiol. A 2004, 162, 171–177.

31

Ferhat, M.; Nagao, J. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 2000, 88, 813–816.

32

Kumar, M. C. S.; Pradeep, B. Transport properties of silver selenide thin films from 100 to 300 K. Bull. Mater. Sci. 2002, 25, 407–411.

33

Liu, Z. L.; Guo, B.; Hong, L.; Jiang, H. X. Physicochemical and photocatalytic characterizations of TiO2/Pt nanocomposites. J. Photochem. Photobiol. A. 2005, 174, 81–88.

34

Hidaka, H.; Zhao, J.; Pelizzetti, E.; Serpone, N. Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldimethylammonium chloride on the TiO2 surface. J. Phys. Chem. 1992, 96, 2226–2230.

35

Chen, C.; Zhao, W.; Lei, P.; Zhao, J.; Serpone, N. Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: Mechanistic implications. Chem. Eur. J. 2004, 10, 1956–1965.

36

Zhang, L.; Wang, W.; Zhou, L.; Xu, H. Bi2WO6 nano- and microstructures: Shape control and associated visible-light-driven photocatalytic activities. Small 2007, 3, 1618–1625.

37

Fu, H.; Pan, C.; Yao, W. Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO4. J. Phys. Chem. B. 2005, 109, 22432–22439.

38

Xu, H.; Zhang, L. Z. Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J. Phys. Chem. C 2009, 113, 1785–1790.

39

Zheng, H.; Liu, K. Y.; Cao, H. Q.; Zhang, X. R. L-lysine-assisted synthesis of ZrO2 nanocrystals and their application in photocatalysis. J. Phys. Chem. C 2009, 113, 18259–18263.

40

Chen, L. Y.; Liang, Y.; Zhang, Z. D. Corundum-type In2O3 urchin-like nanostructures: Synthesis derived from orthorhombic InOOH and application in photocatalysis. Eur. Inorg. Chem. 2009, 7, 903–909.

41

Wang, C. H.; Song, Y. Y.; Zhao, H. W.; Xia, X. H. Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surf. Sci. 2006, 600, L38–L42.

42

Zhao, Y.; Lu, Q.; Chen, D.; Wei, Y. Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers. J. Mater. Chem. 2006, 16, 4504–4509.

43

Li, Y.; Huang, X. J.; Heo, S. H.; Li, C. C.; Choi, Y. K.; Cai, W. P.; Cho, S. O. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir 2007, 23, 2169–2174.

44

Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P. Silver hierarchical bowl-like array: Synthesis, superhydrophobicity, and optical properties. Langmuir 2007, 23, 9802–9807.

45

Kong, L.; Chen, X.; Yang, G.; Yu, L.; Zhang, P. Preparation and characterization of slice-like Cu2(OH)3NO3 superhydrophobic structure on copper foil. Appl. Surf. Sci. 2008, 254, 7255–7258.

46

Chen, X.; Kong, L.; Dong, D.; Yang, G.; Yu, L.; Chen, J.; Zhang, P. Synthesis and characterization of superhydrophobic functionalized Cu(OH)2 nanotube arrays on copper foil. Appl. Surf. Sci. 2009, 255, 4015–4019.

47

de Givenchy, E. P. T.; Amigoni, S.; Martin, C.; Andrada, G.; Caillier, L.; Géribaldi, S.; Guittard, F. Fabrication of superhydrophobic PDMS surfaces by combining acidic treatment and perfluorinated monolayers. Langmuir 2009, 25, 6448–6453.

48

Chen, X.; Kong, L.; Dong, D.; Yang, G.; Yu, L.; Chen, J.; Zhang, P. Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties. J. Phys. Chem. C 2009, 113, 5396–5401.

49

Wu, S.; Cao, H.; Yin, S.; Zhang, X.; Chernow, V. Biomineralization and superhydrophobicity of BaCO3 complex nanostructures. Inorg. Chem. 2009, 48, 10326–10329.

50

Cao, H.; Zheng, H.; Liu, K.; Fu, R. Single-crystalline semiconductor In(OH)3 nanocubes with bifunctions: Superhydrophobicity and photocatalytic activity. Cryst. Growth Des. 2010, 10, 597–601.

51

Song, H. -J.; Shen, X. -Q. Fabrication of functionalized aluminum compound petallike structure with superhydrophobic surface. Surf. Interface Anal. 2010, 42, 165–168.

File
nr-3-12-863_ESM.pdf (970.1 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 July 2010
Revised: 11 September 2010
Accepted: 09 October 2010
Published: 26 November 2010
Issue date: December 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 20921001 and 20535020), the Innovation Method Fund of China (No. 20081885189), and the National High Technology Research and Development Program of China (No. 2009AA03Z321).

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return