Journal Home > Volume 3 , Issue 11

Non-adiabatic effects can considerably modify the phonon dispersion of low-dimensional metallic systems. Here, these effects are studied for the case of metallic single-walled carbon nanotubes using a perturbative approach within a density-functional-based non-orthogonal tight-binding model. The adiabatic phonon dispersion was found to have logarithmic Kohn anomalies at the Brillouin zone center and at two mirror points inside the zone. The obtained dynamic corrections to the adiabatic phonon dispersion essentially modify and shift the Kohn anomalies as exemplified in the case of nanotube (8, 5). Large corrections have the longitudinal optical phonon, which gives rise to the so-called G band in the Raman spectra, and the carbon hexagon breathing phonon. The results obtained for the G band for all nanotubes in the diameter range from 0.8 to 3.0 nm can be used for assignment of the high-frequency features in the Raman spectra of nanotube samples.


menu
Abstract
Full text
Outline
About this article

Non-Adiabatic Phonon Dispersion of Metallic Single-Walled Carbon Nanotubes

Show Author's information Valentin N. Popov1( )Philippe Lambin2
Faculty of Physics, University of Sofia, BG-1164 Sofia Bulgaria
Research Center in Physics of Matter and Radiation Facultés Universitaires Notre Dame de la Paix, B-5000Namur Belgium

Abstract

Non-adiabatic effects can considerably modify the phonon dispersion of low-dimensional metallic systems. Here, these effects are studied for the case of metallic single-walled carbon nanotubes using a perturbative approach within a density-functional-based non-orthogonal tight-binding model. The adiabatic phonon dispersion was found to have logarithmic Kohn anomalies at the Brillouin zone center and at two mirror points inside the zone. The obtained dynamic corrections to the adiabatic phonon dispersion essentially modify and shift the Kohn anomalies as exemplified in the case of nanotube (8, 5). Large corrections have the longitudinal optical phonon, which gives rise to the so-called G band in the Raman spectra, and the carbon hexagon breathing phonon. The results obtained for the G band for all nanotubes in the diameter range from 0.8 to 3.0 nm can be used for assignment of the high-frequency features in the Raman spectra of nanotube samples.

Keywords: Nanotube, phonons, tight-binding model, G band

References(22)

1

Tanaka, T.; Jin, H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 2009, 9, 1497–1500.

2

Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

3

Stürzl, N.; Hennrich, F.; Lebedkin, S.; Kappes, M. M. Near monochiral single-walled carbon nanotube dispersions in organic solvents. J. Phys. Chem. C 2009, 113, 14628–14632.

4

Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M.; Krupke, R. Toward single-chirality carbon nanotube device arrays. ACS Nano 2010, 4, 2748–2754.

5

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

6

Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 155412.

7

Popov, V. N.; Lambin, Ph. Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 085407.

8

Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75, 035427.

9

Sasaki, K.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S.; Farhat, H.; Kong, J. Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. Phys. Rev. B 2008, 77, 245441.

10

Michel, T.; Paillet, M.; Nakabayashi, D.; Picher, M.; Jourdain, V.; Meyer, J. C.; Zahab, A. A.; Sauvajol, J. L. Indexing of individual single-walled carbon nanotubes from Raman spectroscopy. Phys. Rev. B 2009, 80, 245416.

11

Zhang, L.; Jia, Z.; Huang, L.; O'Brien, S.; Yu, Z. Low-temperature Raman spectroscopy of individual single-wall carbon nanotubes and single-layer graphene. J. Phys. Chem. C 2008, 112, 13893–13900.

12

Wang, B.; Gupta, A. K.; Huang, J.; Vedala, H.; Hao, Q.; Crespi, V. H.; Choi, W.; Eklund, P. C. Effect of bending on single-walled carbon nanotubes: A Raman scattering study. Phys. Rev. B 2010, 81, 115422.

13

Kalbac, M.; Farhat, H.; Kavan, L.; Kong, J.; Sasaki, K.; Saito, R.; Dresselhaus, M. S. Electrochemical charging of individual single-walled carbon nanotubes. ACS Nano 2009, 3, 2320–2328.

14

Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A. C.; Robertson, J. Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 2004, 93, 185503.

15

Popov, V. N.; Lambin, Ph. Dynamic and charge doping effects on the phonon dispersion of graphene. Phys. Rev. B 2010, 82, 045406.

16

Pisana, S; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.

17

Yan, J.; Zhang, Y.; Kim, Ph.; Pinczuk, A. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.

18

Popov, V. N.; Lambin, Ph. Intraband electron–phonon scattering in single-walled carbon nanotubes. Phys. Rev. B 2006, 74, 075415.

19

Haken, H. Quantum Field Theory of Solids: An Introduction; North-Holland: Amsterdam, 1976.

20

Paillet, M.; Michel, T.; Meyer, J. C.; Popov, V. N.; Henrard, L.; Roth, S.; Sauvajol, J. L. Raman active phonons of identified semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 96, 257401.

21

Fouquet, M.; Telg, H.; Maultzsch, J.; Wu, Y.; Chandra, B.; Hone, J.; Heinz, T. F.; Thomsen, C. Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. Phys. Rev. Lett. 2009, 102, 075501.

22

Lazzeri, M.; Piscanec, S.; Mauri, F.; Ferrari, A. C.; Robertson, J. Phonon linewidths and electron–phonon coupling in graphite and nanotubes. Phys. Rev. B 2006, 73, 155425.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 August 2010
Revised: 23 September 2010
Accepted: 23 September 2010
Published: 29 October 2010
Issue date: November 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

V. N. P. was supported partly by the Marie Curie European Reintegration Grant No. MERG-CT-2007-201227 within the 7th European Community Frame-work Programme and partly by NSF under grant No. DO 02-136/15.12.2008 (IRC-CoSiM).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return