Journal Home > Volume 4 , Issue 1

The catalytic activity of noble-metal nanocrystals is mainly determined by their sizes and the facets exposed on the surface. For single crystals, it has been demonstrated that the Pd(100) surface is catalytically more active than both Pd(110) and Pd(111) surfaces for the CO oxidation reaction. Here we report the synthesis of Pd nanocrystals enclosed by {100} facets with controllable sizes in the range of 6-18 nm by manipulating the rate of reduction of the precursor. UV-vis spectroscopy studies indicate that the rate of reduction of Na2PdCl4 can be controlled by adjusting the concentrations of Br- and Cl- ions added to the reaction mixture. Pd nanocrystals with different sizes were immobilized on ZnO nanowires and evaluated as catalysts for CO oxidation. We found that the activity of this catalytic system for CO oxidation showed a strong dependence on the nanocrystal size. When the size of the Pd nanocrystals was reduced from 18 nm to 6 nm, the maximum conversion rate was significantly enhanced by a factor of ~10 and the corresponding maximum conversion temperature was lowered by ~80 ℃.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of Pd Nanocrystals Enclosed by {100} Facets and with Sizes < 10 nm for Application in CO Oxidation

Show Author's information Mingshang Jin1,3,§Hongyang Liu2,§Hui Zhang1Zhaoxiong Xie3Jingyue Liu2,4Younan Xia1( )
Department of Biomedical EngineeringWashington University, St. LouisMissouri63130USA
Center for NanoscienceUniversity of Missouri, St. LouisMissouri63121USA
State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryXiamen University, XiamenFujian361005China
Department of Physics and Astronomy, and Department of Chemistry and BiochemistryUniversity of Missouri, St. LouisMissouri63121USA

§ These two authors contributed equally to this work.

Abstract

The catalytic activity of noble-metal nanocrystals is mainly determined by their sizes and the facets exposed on the surface. For single crystals, it has been demonstrated that the Pd(100) surface is catalytically more active than both Pd(110) and Pd(111) surfaces for the CO oxidation reaction. Here we report the synthesis of Pd nanocrystals enclosed by {100} facets with controllable sizes in the range of 6-18 nm by manipulating the rate of reduction of the precursor. UV-vis spectroscopy studies indicate that the rate of reduction of Na2PdCl4 can be controlled by adjusting the concentrations of Br- and Cl- ions added to the reaction mixture. Pd nanocrystals with different sizes were immobilized on ZnO nanowires and evaluated as catalysts for CO oxidation. We found that the activity of this catalytic system for CO oxidation showed a strong dependence on the nanocrystal size. When the size of the Pd nanocrystals was reduced from 18 nm to 6 nm, the maximum conversion rate was significantly enhanced by a factor of ~10 and the corresponding maximum conversion temperature was lowered by ~80 ℃.

Keywords: Palladium, nanocubes, CO oxidation, size-dependence

References(53)

1

Doyle, A. M.; Shaikhutdinov, S. K.; Freund, H. J.; Freund, J. Surface-bonded precursor determines particle size effects for alkene hydrogenation on palladium. Angew. Chem. Int. Edit. 2005, 44, 629-631.

2

Doyle, A. M.; Shaikhutdinov, S. K.; Jackson, S. D.; Freund, H. J. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals? Angew. Chem. Int. Edit. 2003, 42, 5240-5243.

3

Shaikhutdinov, S. K.; Heemeier, M.; Baumer, M.; Lear, T.; Lennon, D.; Oldman, R. J.; Jackson, S. D.; Freund, H. J. Structure-reactivity relationships on supported metal model catalysts: Adsorption and reaction of ethene and hydrogen on Pd/Al2O3/NiAl(110). J. Catal. 2001, 220, 330-339.

4

Wilson, O. M.; Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J. Am. Chem. Soc. 2006, 128, 4510-4511.

5

Bhattacharjee, S.; Dotzauer, D. M.; Bruening, M. L. Selectivity as a function of nanoparticle size in the catalytic hydrogenation of unsaturated alcohols. J. Am. Chem. Soc. 2009, 131, 3601-3610.

6

Chen, J.; Zhang, Q. H.; Wang, Y.; Wan, H. L. Size-dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols. Adv. Synth. Catal. 2008, 350, 453-464.

7

Li, F.; Zhang, Q. H.; Wang, Y. Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Appl. Catal. A 2008, 334, 217-226.

8

He, F.; Liu, J. C.; Roberts, C. B.; Zhao, D. Y. One-step "green" synthesis of Pd nanoparticles of controlled size and their catalytic activity for trichloroethene hydrodechlorination. Ind. Eng. Chem. Res. 2009, 48, 6550-6557.

9

Li, Y.; Boone, E.; El-Sayed, M. A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 2002, 18, 4921-4925.

10

Narayanan, R.; El-Sayed, M. A. Effect of colloidal catalysis on the nanoparticle size distribution: Dendrimer-Pd vs. PVP-Pd nanoparticles catalyzing the Suzuki coupling reaction. J. Phys. Chem. B 2004, 108, 8572-8580.

11

Le Bars, J.; Specht, U.; Bradley, J. S.; Blackmond, D. G. A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir 1999, 15, 7621-7625.

12

Garcia-Martinez, J. C.; Lezutekong, R.; Crooks, R. M. Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the Stille reaction. J. Am. Chem. Soc. 2005, 127, 5097-5103.

13

Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 2002, 418, 164-167.

14

Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 2003, 36, 20-30.

15

Fernandez-Garcia, M.; Martinez-Arias, A.; Salamanca, L. N.; Coronado, J. M.; Anderson, J. A.; Conesa, J. C.; Soria, J. Influence of ceria on Pd activity for the CO + O2 reaction. J. Catal. 1999, 187, 474-485.

16

Coulston, G. W.; Haller, G. L. The dynamics of Co oxidation on Pd, Rh, and Pt studied by high-resolution infrared chemiluminescence spectroscopy. J. Chem. Phys. 1991, 95, 6932-6944.

17

Chen, M. S.; Cal, Y.; Yan, Z.; Gath, K. K.; Axnanda, S.; Goodman, D. W. Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf. Sci. 2007, 601, 5326-5331.

18

Nakao, K.; Watanabe, O.; Sasaki, T.; Ito, S.; Tomishige, K.; Kunimori, K. CO oxidation on Pd(111), Pt(111), and Rh(111) surfaces studied by infrared chemiluminescence spectroscopy. Surf. Sci. 2007, 601, 3796-3800.

19

Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. Controlled formation of concave tetrahedral/ trigonal bipyramidal palladium nanocrystals. J. Am. Chem. Soc. 2009, 131, 13916-13917.

20

Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110, 13393-13398.

21

Zhou, W. J.; Lee, J. Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid. J. Phys. Chem. C 2008, 112, 3789-3793.

22

Semagina, N.; Renken, A.; Kiwi-Minsker, L. Palladium nanoparticle size effect in 1-hexyne selective hydrogenation. J. Phys. Chem. C 2007, 111, 13933-13937.

23

Semagina, N.; Renken, A.; Laub, D.; Kiwi-Minsker, L. Synthesis of monodispersed palladium nanoparticles to study structure sensitivity of solvent-free selective hydrogenation of 2-methyl-3-butyn-2-ol. J. Catal. 2007, 246, 308-314.

24

Tardy, B.; Noupa, C.; Leclercq, C.; Bertolini, J. C.; Hoareau, A.; Treilleux, M.; Faure, J. P.; Nihoul, G. Catalytic-hydrogenation of 1, 3-butadiene on Pd particles evaporated on carbonaceous supports: Particle size effect. J. Catal. 1991, 129, 1-11.

25

Silvestre-Albero, J.; Rupprechter, G.; Freund, H. J. Atmospheric pressure studies of selective 1, 3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts: Effect of Pd particle size. J. Catal. 2006, 240, 58-65.

26

Vasylyev, M. V.; Maayan, G.; Hovav, Y.; Haimov, A.; Neumann, R. Palladium nanoparticles stabilized by alkylated polyethyleneimine as aqueous biphasic catalysts for the chemoselective stereocontrolled hydrogenation of alkenes. Org. Lett. 2006, 8, 5445-5448.

27

Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189-200.

28

Niu, W. X.; Li, Z. Y.; Shi, L. H.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J.; Xu, G. B. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst. Growth Des. 2008, 8, 4440-4444.

29

Lim, B.; Kobayashi, H.; Camargo, P. H. C.; Allard, L. F.; Liu, J. Y.; Xia, Y. N. New insights into the growth mechanism and surface structure of palladium nanocrystals. Nano Res. 2010, 3, 180-188.

30

Lim, B.; Xiong, Y. J.; Xia, Y. N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 9279-9282.

31

Xia, Y.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60-103.

32

Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665-3675.

33

Xiong, Y. J.; Cai, H. G.; Yin, Y. D.; Xia, Y. N. Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chem. Phys. Lett. 2007, 440, 273-278.

34

Chen, Y. H.; Hung, H. H.; Huang, M. H. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. J. Am. Chem. Soc. 2009, 131, 9114-9121.

35

Tian, N.; Zhou, Z. Y.; Sun, S. G. Electrochemical preparation of Pd nanorods with high-index facets. Chem. Commun. 2009, 1502-1504.

36

Yu, Y. C.; Zhao, Y. X.; Huang, T.; Liu, H. F. Microwave-assisted synthesis of palladium nanocubes and nanobars. Mater. Res. Bull. 2010, 45, 159-164.

37

Chang, G.; Oyama, M.; Hirao, K. Facile synthesis of monodisperse palladium nanocubes and the characteristics of self-assembly. Acta Mater. 2007, 55, 3453-3456.

38

Shen, X. S.; Wang, G. Z.; Hong, X.; Zhu, W. Simple-cubic microcubes assembled by palladium nanocubes. CrystEngComm 2009, 11, 753-755.

39

Zhang, C. J.; Hu, P. CO oxidation on Pd(100) and Pd(111): A comparative study of reaction pathways and reactivity at low and medium coverages. J. Am. Chem. Soc. 2001, 123, 1166-1172.

40

Nakao, K.; Ito, S.; Tomishige, K.; Kunimori, K. Structure of activated complex of CO2 formation in a CO + O2 reaction on Pd(110) and Pd(111). J. Phys. Chem. B 2005, 109, 17553-17559.

41

Nakao, K.; Ito, S. I.; Tomishige, K.; Kunimori, K. Reaction mechanism and structure of activated complex of CO2 formation in CO oxidation on Pd(110) and Pd(111) surfaces. Catal. Today 2006, 111, 316-321.

42

Nakao, K.; Ito, S.; Tomishige, K.; Kunimori, K. Infrared chemiluminescence study of CO + O2 reaction on Pd(110): Activated complex of CO2 formation at high CO coverage. Chem. Phys. Lett. 2005, 410, 86-89.

43

Nakao, K.; Ito, S.; Tomishige, K.; Kunimori, K. Infrared chemiluminescence study of CO2 formation in CO plus NO reaction on Pd(110) and Pd(111) surfaces. J. Phys. Chem. B 2005, 109, 17579-17586.

44

Uetsuka, H.; Watanabe, K.; Ohnuma, H.; Kunimori, K. Structure sensitivity of the dynamics of CO oxidation on Pd(111), Pd(110) and polycrystalline Pd surfaces: Infrared chemiluminescence study of the product CO2. Chem. Lett. 1996, 25, 227-228.

45

Uetsuka, H.; Watanabe, K.; Ohnuma, H.; Kunimori, K. Structure-sensitivity in the dynamics of CO oxidation over Pd surfaces: Infrared chemiluminescence of the product CO2. Surf. Rev. Lett. 1997, 4, 1359-1363.

46

Srivastava, S. C.; Newman, L. Mixed ligand complexes of palladium(Ⅱ) with chloride and bromide. Inorg. Chem. 1966, 5, 1506-1510.

47

Feldberg, S.; Klotz, P.; Newman, L. Computer evaluation of equilibrium constants from spectrophotometric data. Inorg. Chem. 1972, 11, 2860-2865.

48

Wang, Z. F.; Shen, B.; He, N. Y. The synthesis of Pd nanoparticles by combination of the stabilizer of CNCH2COOK with its reduction. Mater. Lett. 2004, 58, 3652-3655.

49

Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127, 7332-7333.

50

Kuhn, J. N.; Tsung, C. K.; Huang, W.; Somorjai, G. A. Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J. Catal. 2009, 265, 209-215.

51

Becker, C.; Henry, C. R. Cluster size dependent kinetics for the oxidation of CO on a Pd/MgO(100) model catalyst. Surf. Sci. 1996, 352, 457-462.

52

Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947-1949.

53

Liu, H.Y.; Liu, J. Faceted ZnO nanowire supported Pd catalyst for the methanol steam reforming. Microsc. Microanal. 2010, 16, 1206-1207.

File
nr-4-1-83_ESM.pdf (666.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 August 2010
Revised: 20 September 2010
Accepted: 21 September 2010
Published: 27 October 2010
Issue date: January 2011

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported in part by the NSF (DMR-0804088) and startup funds from Washington University in St. Louis. As a visiting student from Xiamen University, M. J. was also partially supported by the China Scholarship Council (CSC). Part of the work was performed at the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the NSF under award no. ECS-0335765. H. L. and J. L. were supported by the University of Missouri-St. Louis.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return