Journal Home > Volume 3 , Issue 11

SnO2/graphene nanocomposites have been fabricated by a simple chemical method. In the fabrication process, the control of surface charge causes echinoid-like SnO2 nanoparticles to be formed and uniformly decorated on the graphene. The electrostatic attraction between a graphene nanosheet (GNS) and the echinoid-like SnO2 particles under controlled pH creates a unique nanostructure in which extremely small SnO2 particles are uniformly dispersed on the GNS. The SnO2/graphene nanocomposite has been shown to perform as a high capacity anode with good cycling behavior in lithium rechargeable batteries. The anode retained a reversible capacity of 634 mA·h·g-1 with a coulombic efficiency of 98% after 50 cycles. The high reversibility can be attributed to the mechanical buffering by the GNS against the large volume change of SnO2 during delithiation/lithiation reactions. Furthermore, the power capability is significantly enhanced due to the nanostructure, which enables facile electron transport through the GNS and fast delithiation/lithiation reactions within the echinoid-like nano-SnO2. The route suggested here for the fabrication of SnO2/graphene hybrid materials is a simple economical route for the preparation of other graphene-based hybrid materials which can be employed in many different fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

SnO2/Graphene Composite with High Lithium Storage Capability for Lithium Rechargeable Batteries

Show Author's information Haegyeom Kim1Sung-Wook Kim2Young-Uk Park2Hyeokjo Gwon2Dong-Hwa Seo2Yuhee Kim4Kisuk Kang1,2,3( )
Graduate School of Energy, Environment, Water, and Sustainability Korea Advanced Institute of Science and Technology (KAIST), 335 GwahangnoYuseong-gu, Daejeon 305-701 Republic of Korea
Department of Materials Science and Engineering, KAIST, 335 GwahangnoYuseong-gu, Daejeon 305-701 Republic of Korea
KAIST Institute for Eco-energy, Nanocentury, KAIST, 335 GwahangnoYuseong-gu, Daejeon 305-701 Republic of Korea
Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Wolsong-gil 5Seongbuk-gu, Seoul 136-791 Republic of Korea

Abstract

SnO2/graphene nanocomposites have been fabricated by a simple chemical method. In the fabrication process, the control of surface charge causes echinoid-like SnO2 nanoparticles to be formed and uniformly decorated on the graphene. The electrostatic attraction between a graphene nanosheet (GNS) and the echinoid-like SnO2 particles under controlled pH creates a unique nanostructure in which extremely small SnO2 particles are uniformly dispersed on the GNS. The SnO2/graphene nanocomposite has been shown to perform as a high capacity anode with good cycling behavior in lithium rechargeable batteries. The anode retained a reversible capacity of 634 mA·h·g-1 with a coulombic efficiency of 98% after 50 cycles. The high reversibility can be attributed to the mechanical buffering by the GNS against the large volume change of SnO2 during delithiation/lithiation reactions. Furthermore, the power capability is significantly enhanced due to the nanostructure, which enables facile electron transport through the GNS and fast delithiation/lithiation reactions within the echinoid-like nano-SnO2. The route suggested here for the fabrication of SnO2/graphene hybrid materials is a simple economical route for the preparation of other graphene-based hybrid materials which can be employed in many different fields.

Keywords: Graphene, nanocomposite, lithium, SnO2, rechargeable batteries, surface charge

References(39)

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

2

Lee, Y. J.; Yi, H.; Kim, W. J.; Kang, K.; Yun, D. S.; Strano, M. S.; Ceder, G.; Belcher, A. M. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 2009, 324, 1051-1055.

3

Ryu, J.; Kim, S. W.; Kang, K.; Park, C. B. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 2010, 4, 159-164.

4

Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160-1165.

5

Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructure with high lithium storage capacity. Adv. Mater. 2006, 18, 2325-2329.

6

Yao, J.; Shen, X.; Wang, B.; Liu, H.; Wang, G. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1849-1852.

7

Liu, Y.; Zhang, X. Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim. Acta 2009, 54, 4180-4185.

8

Paek, S. M.; Yoo, E.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72-75.

9

Chan, C. K.; Peng, C. K.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

10

Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303-306.

11

Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378-8384.

12

Beaulieu, L. Y.; Hewitt, K. C.; Turner, R. L.; Bonakdarpour, A.; Abdo, A. A.; Christensen, L.; Eberman, K. W.; Krause, L. J.; Dahn, J. R. The electrochemical reaction of Li with amorphous Si-Sn alloys. J. Electrochem. Soc. 2003, 150, A149-A156.

13

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

14

Zhao, N. H.; Yang, L. C.; Zhang, P.; Wnag, G. J.; Wang, B.; Yao, B. D.; Wu, Y. P. Polycrystalline SnO2 nanowires coated with amorphous carbon nanotubes as anode material for lithium ion batteries. Mater. Lett. 2010, 64, 972-975.

15

Wen, Z.; Wang, Z.; Zhang, Z.; Li, J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772-2778.

16

Hassoun, J.; Derien, G.; Panero, S.; Scrosati, B. The role of the morphology in the response of Sb-C nanocomposite electrodes in lithium cells. J. Power Sources 2008, 183, 339-343.

17

Park, C. M.; Sohn, H. J. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Adv. Mater. 2010, 22, 47-52.

18

Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31-50.

19

Courteny, I. A.; Dahn, J. R. Electrochemical and in situ diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045-2052.

20

Zhang, R.; Lee, J. Y.; Liu, Z. L. Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion batteries. J. Power Sources 2002, 112, 596-605.

21

Courtney, I. A.; Dahn, J. R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J. Electrochem. Soc. 1997, 144, 2943-2948.

22

Hightower, A.; Delcroix, P.; Caer, G. L.; Huang, C. K.; Ratnakumar, B. V.; Ahn, C. C.; Fultz, B. J. A 119Sn Mossbauer spectrometry study of Li-SnO anode materials for Li-ion cells. J. Electrochem. Soc. 2000, 147, 1-8.

23

Aurbach, D.; Nimberger, A.; Markovsky, B.; Levi, E. E.; Sominski, E.; Gedanken, A. Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chem. Mater. 2002, 14, 4155-4163.

24

Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878-2887.

25

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132-145.

26

Park, S.; Ruoff, R. S. Chemical methods for the production of graphene. Nat. Nanotechnol. 2009, 4, 217-224.

27

Han, T. H.; Lee, W. J.; Lee, D. H.; Kim, J. E.; Choi, E. Y.; Kim, S. O. Peptide/graphene hybrid assembly into core/shell nanowires. Adv. Mater. 2010, 22, 2060-2064.

28

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

29

Guo, P.; Song, H.; Chen, X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1320-1324.

30

Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155-158.

31

Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499-3503.

32
Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction; 3rd ed.; Prentice Hall: Upper Saddle River, NJ, 2001; pp. 167-171.
33

Kim, S. W.; Han, T. H.; Kim, J.; Gwon, H.; Moon, H. S.; Kang, S. W.; Kim, S. O.; Kang, K. Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano 2009, 3, 1085-1090.

34

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

35

Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126-1130.

36

Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095-14107.

37

Balan, L.; Ghanbaja, J.; Willmann, P.; Billaud, D. Novel tin-graphite composites as negative electrodes of Li-ion batteries. Carbon 2005, 43, 2311-3216.

38

Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025-2027.

39

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.

File
12274_2010_50_MOESM1_ESM.pdf (341.5 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 August 2010
Revised: 17 September 2010
Accepted: 20 September 2010
Published: 29 October 2010
Issue date: November 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) (WCU program, No. 31-2008-000-10055-0) and a grant from the National Research Foundation of Korea (No. NRF-2009-0094219) funded by the Ministry of Education and Science and Technology (MEST) and the Energy Resources Technology R&D program (No. 20092020100040) under the Ministry of Knowledge Economy.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return