Journal Home > Volume 3 , Issue 11

The synthesis of graphene–semiconductor nanocomposites has attracted increasing attention due to their interesting optoelectronic properties. However the synthesis of such nanocomposites, with decorated particles well dispersed on graphene, is still a great challenge. This work reports a facile, one-step, solvothermal method for the synthesis of graphene–CdS and graphene–ZnS quantum dot nanocomposites directly from graphene oxide, with CdS and ZnS very well dispersed on the graphene nanosheets. Photoluminescence measurements showed that the integration of CdS and ZnS with graphene significantly decreases their photoluminescence. Transient photovoltage studies revealed that the graphene–CdS nanocomposite exhibits a very unexpected strong positive photovoltaic response, while separate samples of graphene and CdS quantum dots (QDs) of a similar size do not show any photovoltaic response.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-Step, Solvothermal Synthesis of Graphene–CdS and Graphene–ZnS Quantum Dot Nanocomposites and Their Interesting Photovoltaic Properties

Show Author's information Ping Wang1Tengfei Jiang2Chengzhou Zhu1Yueming Zhai1Dejun Wang2Shaojun Dong1( )
State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of SciencesChangchun 130022 China
College of Chemistry Jilin UniversityChangchun 130012 China

Abstract

The synthesis of graphene–semiconductor nanocomposites has attracted increasing attention due to their interesting optoelectronic properties. However the synthesis of such nanocomposites, with decorated particles well dispersed on graphene, is still a great challenge. This work reports a facile, one-step, solvothermal method for the synthesis of graphene–CdS and graphene–ZnS quantum dot nanocomposites directly from graphene oxide, with CdS and ZnS very well dispersed on the graphene nanosheets. Photoluminescence measurements showed that the integration of CdS and ZnS with graphene significantly decreases their photoluminescence. Transient photovoltage studies revealed that the graphene–CdS nanocomposite exhibits a very unexpected strong positive photovoltaic response, while separate samples of graphene and CdS quantum dots (QDs) of a similar size do not show any photovoltaic response.

Keywords: quantum dots, Graphene, charge transfer, photovoltaic, ZnS, CdS

References(26)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

3

Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.; Tsang J. C.; Avouris, P. Energy dissipation in graphene field-effect transistors. Nano Lett. 2009, 9, 1883–1888.

4

Ang, P. K.; Chen, W.; Wee A. T. S.; Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.

5

Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.

6

Stoller, M. D.; Park, S.; Zhu, Y.; An J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

7

Stampfer, C.; Schurtenberger, E.; Molitor, F.; Guttinger, J.; Ihn, T.; Ensslin, K. Tunable graphene single electron transistor. Nano Lett. 2008, 8, 2378–2383.

8

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

9

Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527.

10

Yong, V.; Tour, J. M. Theoretical efficiency of graphene-based photovoltaics. Small 2010, 6, 313–318.

11

Guo, C. X.; Yang, H. B.; Sheng, Z. M.; Lu, Z. S.; Song, Q. L.; Li, C. M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 2010, 49, 3014–3017.

12

Robel, I.; Bunker, B. A.; Kamat, P. V. Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv. Mater. 2005, 17, 2458–2463.

13

Gu, F.; Li, C.; Wang, S. Solution-chemical synthesis of carbon nanotube/ZnS nanoparticle core/shell heterostructures. Inorg. Chem. 2007, 46, 5343–5348.

14

Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 2009, 20, 455602.

15

Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.

16

Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.

17

Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998.

18

Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

19

Yuge, R.; Zhang, M.; Tomonari, M.; Yoshitake, T.; Iijima, S.; Yudasaka, M. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2008, 2, 1865–1870.

20

Williams, G.; Kamat, P. V. Graphene–semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25, 13869–13873.

21

Duzhko, V.; Timoshenko, V. Y.; Koch, F.; Dittrich, T. Photovoltage in nanocrystalline porous TiO2. Phys. Rev. B 2001, 64, 075204.

22

Fang, Q.; Zhu, G.; Jin, Z.; Xue, M.; Wei, X.; Wang, D.; Qiu, S. A multifunctional metal–organic open framework with a bcu topology constructed from undecanuclear clusters. Angew. Chem. Int. Ed. 2006, 45, 6126–6130.

23

Wei, X.; Xie, T.; Xu, D.; Zhao, Q.; Pang, S.; Wang, D. A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by the transient photovoltage technique. Nanotechnology 2008, 19, 275707.

24

Wang, P.; Xie, T.; Li, H.; Peng, L.; Zhang, Y.; Wu, T.; Pang, S.; Zhao, Y.; Wang, D. Synthesis and plasmon-induced charge-transfer properties of monodisperse gold-doped titania microspheres. Chem. Eur. J. 2009, 15, 4366–4372.

25

Zhang, Q.; Wang, D.; Wei, X.; Xie, T.; Li, Z.; Lin, Y.; Yang, M. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure. Thin Solid Films 2005, 491, 242–248.

26

Lin, Y.; Wang, D.; Zhao, Q.; Yang, M.; Zhang, Q. A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy. J. Phys. Chem. B 2004, 108, 3202–3206.

File
12274_2010_46_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 August 2010
Revised: 14 September 2010
Accepted: 14 September 2010
Published: 29 October 2010
Issue date: November 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20820102037) and the 973 Project (Nos. 2009CB930100 and 2010CB933600). Dr. Ping Wang gratefully acknowledges partial financial support from the China Postdoctoral Science Foundation (No. 20090461047) and 973 Project (No. 2007CB613303).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return