Journal Home > Volume 3 , Issue 11

We have developed an efficient strategy for the non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) which allows a biomimetic presentation of carbohydrates on their surface by π-π stacking interactions. The strategy is based on the use of sugar-based amphiphiles functionalized with tetrabenzo[a, c, g, i]fluorene (Tbf), a polyaromatic compound with a topology that resembles a butterfly with open wings. The new carbohydrate-tethered Tbf amphiphiles have been synthesized in a straightforward manner using click chemistry. The reported method has been developed in order to improve the rather low ability of pyrene-based systems to exfoliate MWCNTs in water. By means of thermogravimetric analysis (TGA), ultraviolet (UV), infrared (IR), and fluorescence spectroscopies the interaction between MWCNTs and the Tbf group has been found to be stronger than those involving pyrene-based amphiphilic carbohydrates. The resulting aggregates with a multivalent sugar exposition on their surface are able to engage in specific ligand-lectin interactions similar to glycoconjugates on a cell membrane.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Improved Non-Covalent Biofunctionalization of Multi-Walled Carbon Nanotubes Using Carbohydrate Amphiphiles with a Butterfly-Like Polyaromatic Tail

Show Author's information Mohyeddin Assali1Manuel Pernía Leal1Inmaculada Fernández2Pablo Romero-Gomez3Rachid Baati4Noureddine Khiar1( )
Instituto de Investigaciones Químicas C.S.I.C-Universidad de Sevilla c/. Américo Vespucio, 49, Isla de la CartujaSevilla 41092 Spain
Departamento de Química Orgánica y Farmacéutica Facultad de Farmacia Universidad de SevillaSevilla 41012 Spain
Instituto de Ciencias de Materiales de Sevilla C.S.I.C-Universidad de Sevilla c/. Américo Vespucio, 49, Isla de la CartujaSevilla 41092 Spain
Université de Strasbourg Faculté de Pharmacie CNRS/UMR 7199 Laboratoire des Systèmes Chimiques Fonctionnels BP 60024, 74 route du Rhin 67400 Illkirch, France

Abstract

We have developed an efficient strategy for the non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) which allows a biomimetic presentation of carbohydrates on their surface by π-π stacking interactions. The strategy is based on the use of sugar-based amphiphiles functionalized with tetrabenzo[a, c, g, i]fluorene (Tbf), a polyaromatic compound with a topology that resembles a butterfly with open wings. The new carbohydrate-tethered Tbf amphiphiles have been synthesized in a straightforward manner using click chemistry. The reported method has been developed in order to improve the rather low ability of pyrene-based systems to exfoliate MWCNTs in water. By means of thermogravimetric analysis (TGA), ultraviolet (UV), infrared (IR), and fluorescence spectroscopies the interaction between MWCNTs and the Tbf group has been found to be stronger than those involving pyrene-based amphiphilic carbohydrates. The resulting aggregates with a multivalent sugar exposition on their surface are able to engage in specific ligand-lectin interactions similar to glycoconjugates on a cell membrane.

Keywords: Carbon nanotubes, non-covalent functionalization, tetrabenzo[a, c, g, i]fluorene, carbohydrates, click chemistry, biocompatible system

References(62)

1

Ijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

2

Tanaka, K.; Yamabe, T.; Fukui, K. The Science and Technology of Carbon Nanotubes; Elsevier: Oxford U.K., 1999.

3

Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Springer-Verlag: Berlin, 2000.

DOI
4

Lu, F.; Gu, L.; Meziani, M. J.; Wang, X.; Luo, P. G.; Veca, L. M.; Cao, L.; Sun, Y. P. Advances in bioapplications of carbon nanotubes. Adv. Mater. 2009, 21, 139-152.

5

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85-120.

6

Byon, H. R.; Choi, H. C. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 2006, 128, 2188-2189.

7

Cherukuri, P.; Bachilo, S. M.; Litovsky. S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638-15639.

8

Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P. A.; Welland, M. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2, 713-717.

9

Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008, 8, 586-590.

10

Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 2005, 9, 674-679.

11

Bhirde, A. A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A. A.; Masedunskas, A.; Leapman, R. D.; Weigert, R.; Gutkind, J. S.; Rusling, J. F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009, 3, 307-316.

12

Kam, N. W. S.; Dai, H. Carbon nanotubes as intracellular protein transporters generality and biological functionality. J. Am. Chem. Soc. 2005, 127, 6021-6026.

13

Pantarotto, D.; Briand, J. P.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16-17.

14

Liu, Y.; Wu, D. C.; Zhang, W. D.; Jiang, X.; He, C. B.; Chung, T. S.; Goh, S. H.; Leong, K. W. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed. 2005, 44, 4782-4785.

15

Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA delivery into human T cells and primary cells with carbon nanotube transporters. Angew. Chem. Int. Ed. 2007, 46, 2023-2027.

16

Yang, R.; Yang, X.; Zhang, Z.; Zhang, Y.; Wang, S.; Cai, Z.; Jia, Y.; Ma, Y.; Zheng, C.; Lu, Y.; Roden, R.; Chen, Y. Single walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 2006, 13, 1714-1723.

17

Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sc. USA. 2005, 102, 11600-11605.

18

Chakravarty, P.; Marches, R.; Zimmerman, N. S.; Swafford, A. D. E.; Bajaj, P.; Musselman, I. H.; Pantano, P.; Draper, R. K.; Vitetta. E. S. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Nat. Acad. Sci. USA 2008, 105, 8697-8702.

19

Gannon, C. J.; Cherukuri, P.; Yakobson, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007, 110, 2654-2665.

20

Singh, R.; Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.; Bianco, A.; Kostarelos, K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 2006, 103, 3357-3362.

21

Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410-1415.

22

Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X.; Dai, H.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature Nanotech. 2008, 3, 216-221.

23

Sudibya, H. G.; Ma, J.; Dong, X.; Ng, S.; Li, L. J.; Liu, X. W.; Chen, P. Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew. Chem. Int. Ed. 2009, 48, 2723-2726.

24

Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105-1136.

25

Britz, D. A.; Khlobystov, A. N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem. Soc. Rev. 2006, 35, 637-659.

26

Hahn, U.; Engmann, S.; Oelsner, C.; Ehli, C.; Guldi, D. M.; Torres, T. Immobilizing water-soluble dendritic electron donors and electron acceptors-phtalocyanines and perylendiimide-onto single Wall carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 6392-6401.

27

Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidwall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839.

28

Nakashima, N.; Tomonari, Y.; Murakami, H. Water-soluble single-walled carbon nanotubes via non-covalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem. Lett. 2002, 638-639.

29

Georgakilas, V.; Tzitzios, V.; Gournis, D.; Petridis, D. Attachement of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater. 2005, 17, 1613-1617.

30

Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007, 1, 50-56.

31

Richard, C.; Balavoine, F.; Schultz, P.; Moreau, N.; Mioskowski, C. Immobilization of histidine-tagged proteins on functionalized carbon nanotubes. J. Bionanosci. 2007, 1, 106-113.

32

Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D.; Prato, M.; Bianco, A.; Kostarelos, K. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun. 2008, 459-461.

33

Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D. W.; Dai, H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 2009, 48, 7668-7672.

34

Simmons, T. J.; Bult, J.; Hashim, D. P.; Linhardt, R. J.; Ajayan, P. M. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 2009, 3, 865-870.

35

Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507-514.

36

Astronomo, R. A.; Burton, D. R. Carbohydrate vaccines: Developing sweet solutions to sticky situations? Nature Rev. Drug Discover. 2010, 9, 308-324.

37

Dube, D. H.; Bertozzi, C. R; Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nature Rev. Drug Discover. 2005, 4, 477-488.

38

Seeberger, P. H.; Werz, D. B. Synthesis and medical applications of oligosaccharides. Nautre 2007, 446, 1046-1051.

39

Lundquist, J. J.; Toone, E. J. The cluster glycoside effect. Chem. Rev. 2002, 102, 555-578.

40

Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors Angew. Chem. Int. Ed. 1998, 37, 2754-2794.

DOI
41

Chen, X.; Tam, U. C.; Czlapinski, J. L.; Lee, G. S.; Rabuka, D.; Zettl, A.; Bertozzi, C. R. Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 2006, 128, 6292-6293.

42

Wang, H.; Gu, L.; Lin, Y.; Lu, F.; Meziani, M. J.; Luo, P. G.; Wang, W.; Cao, L.; Sun, Y. P. Unique aggregation of anthrax (bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 13364-13365.

43

Khiar, N.; Pernía Leal, M.; Baati, R.; Ruhlmann, C.; Mioskowski, C.; Schultz, P.; Fernández, I. Tailoring carbon nanotube surfaces with glyconanorings: New bionanomaterials with specific lectin affinity. Chem. Commun. 2009, 27, 4121-4123.

44

Assali, M.; Pernía Leal, M.; Fernández, I.; Baati, R.; Mioskowski, C.; Khiar, N. Non-covalent functionalization of carbon nanotubes with glycolipids: Glyconanomaterials with specific lectin-affinity. Soft Matter 2009, 5, 948-950.

45

Andersson, C. H.; Lahmann, M.; Oscarson, S.; Grennberg, H. Reversible non-covalent derivatisation of carbon nanotubes with glycosides. Soft Matter 2009, 5, 2713-2716.

46

Zhang, J.; Lee, J. K.; Wu, Y.; Murray, R. W. Photo-luminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 2003, 3, 403-407.

47

Paloniemi, H.; Ääritalo, T.; Laiho, T.; Liuke, H.; Kocharova, N.; Haapkka, K.; Terzi, F.; Seeber, R.; Lukkari, J. Water-soluble full-lenght single-wall carbon nanotube polyelectrolytes: Preparation and characterization. J. Phys. Chem. B. 2005, 109, 8634-8642.

48

Kar, T.; Bettinger, H. F.; Scheiner, S.; Roy, A. K. Non-covalent π−π stacking and CH---π interactions of aromatics on the surface of single-wall carbon nanotubes: An MP2 study. J. Phys. Chem. C. 2008, 112, 20070-20075.

49

Brown, A. P.; Anson, F. C. Molecular anchors for the attachment of metal complexes to graphite electrode surfaces. J. Electroanal. Chem. 1977, 83, 203-206.

50

Pérez, E. M.; Martín, N. Curves ahead: Molecular receptors for fullerenes based on concave-convex complementarity. Chem. Soc. Rev. 2008, 37, 1512-1519.

51

Brown, A. R.; Irving, S. L.; Ramage, R. Affinity purification of synthetic peptides and proteins on porous graphitised carbon. Tetrahedron Letters. 1993, 34, 7129-7132.

52

Brown, A. R.; Irving, S. L.; Ramage, R.; Raphy, G. (17-Tetrabenzo [a, c, g, i] fluorenyl) methyl chloroformate (TbfmocCl) a reagent for the rapid and efficient purification of synthetic peptides and proteins. Tetrahedron 1995, 51, 11815-11830.

53

Ramage, R.; Wahl, F. O. 4-(17-Tetrabenzo [a, c, g, i] fluorenylmethyl)-41′, 4″-dimethoxytrityl chloride: A hydrophobic 5′-protecting group for the separation of synthetic oligonucleotides. Tetrahedron Letters 1993, 34, 7133-7136.

54

Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.

DOI
55

Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1, 2, 3]-Triazoles by regiospecific copper(Ⅰ)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057-3064.

56

Hay, A. M.; Hobbs-Dewitt, S.; MacDonald, A. A.; Ramage, R. Use of tetrabenzo [a, c, g, i] fluorene as an anchor group for the solid/solution phase synthesis of the quinolone antibacterial, ciprofloxacin. Synthesis 1999, 11, 1979-1985.

57

Yang, Z.; Chen, X.; Chen, C.; Li, W.; Zhang, H.; Xu, L.; Yi, B. Noncovalent-wrapped sidewall functionalization of multiwalled carbon nanotubes with polyimide. Polymer Composites, 2007, 28, 36-41.

58

Brown, S. D. M.; Jorio, A.; Dresselhaus, M. S.; Dresselhaus, G. Observations of the D-band feature in the raman spectra of carbon nanotubes. Phys. Rev. B. 2001, 64, 073403.

59

Yang, Q.; Shuai, Li.; Zhou, J.; Lu, F.; Pan, X. Functionalization of multiwalled carbon nanotubes by pyrene-labeled hydroxypropyl cellulose. J. Phys. Chem. B 2008, 112, 12934-12939.

60

D'Souza, F.; Ito, O. Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: Electron transfer, sensing, switching, and catalytic applications. Chem. Commun. 2009, 4913-4928.

61

Banerjee, R.; Das, K.; Ravishankar, R.; Suguna, K.; Surolia, A.; Vijayan, A. M. Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J. Mol. Biol. 1996, 259, 281-296.

62

Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, M.; Ebbesen, T. W.; Mioskowski, C. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed. 1999, 38, 1912-1915.

DOI
File
12274_2010_44_MOESM1_ESM.pdf (777 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 July 2010
Revised: 09 September 2010
Accepted: 09 September 2010
Published: 26 October 2010
Issue date: November 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the Ministerio de Ciencia e Innovación (grant No. CTQ2010-21755-CO2-00), the Junta de Andalucía (grant Nos. P06-FQM-01852 and P07-FQM-2774), the Centre National de la Recherche Scientifique (France) and the Consejo Superior de Investigaciones Científicas (Egide Picasso 09543XA and Projets Internationaux de Cooperation Scientifiques Program 2008-2010).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return