Journal Home > Volume 3 , Issue 11

An in situ method has been used to load Cu2O nanoparticles on the surface of a hydroxyl group rich TiO2 precursor. Cu2O nanoparticles are formed by in situ reduction of Cu(OH)2 with Sn2+ ions linked to the surface of the TiO2 precursor. The initial Cu2O nanoparticles serve as seeds for subsequent particle growth. The resulting Cu2O nanoparticles are evenly dispersed on the surface of the TiO2 precursor, and are heat and air stable. The as-prepared composite is an excellent catalyst for Ullmann type cross coupling reactions of aryl halides with phenol. The composite catalyst also showed good stability, remaining highly active after five consecutive runs.


menu
Abstract
Full text
Outline
About this article

In Situ Loading of Cu2O Nanoparticles on a Hydroxyl Group Rich TiO2 Precursor as an Excellent Catalyst for the Ullmann Reaction

Show Author's information Fang Niu1,2Yan Jiang1,2Weiguo Song1( )
Beijing National Laboratory for Molecular Sciences (BNLMS) Laboratory for Molecular Nanostructures and Nanotechnology Institute of Chemistry, Chinese Academy of SciencesBeijing 100190 China
The Graduate University of the Chinese Academy of SciencesYuquanlu, Beijing 100049 China

Abstract

An in situ method has been used to load Cu2O nanoparticles on the surface of a hydroxyl group rich TiO2 precursor. Cu2O nanoparticles are formed by in situ reduction of Cu(OH)2 with Sn2+ ions linked to the surface of the TiO2 precursor. The initial Cu2O nanoparticles serve as seeds for subsequent particle growth. The resulting Cu2O nanoparticles are evenly dispersed on the surface of the TiO2 precursor, and are heat and air stable. The as-prepared composite is an excellent catalyst for Ullmann type cross coupling reactions of aryl halides with phenol. The composite catalyst also showed good stability, remaining highly active after five consecutive runs.

Keywords: Cuprous oxide, in situ, composite structure, titania precursor, Ullmann type cross coupling

References(25)

1

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332-334.

2

Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362-365.

3

Hughes, M. D.; Xu, Y. -J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437, 1132-1135.

4

Liang, H. -P.; Zhang, H. -M.; Hu, J. -S.; Guo, Y. -G.; Wan, L. -J.; Bai, C. -L. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed. 2004, 43, 1540-1543.

5

Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852-7872.

6

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647-1650.

7

Huang, J.; Jiang, T.; Gao, H. -X.; Han, B. -X.; Liu, Z. -M.; Wu, W. -Z.; Chang, Y. -H.; Zhao, G. -Y. Pd nanoparticles immobilized on molecular sieves by ionic liquids: Heterogeneous catalysts for solvent-free hydrogenation. Angew. Chem. Int. Ed. 2004, 43, 1397-1399.

8

Zhang, J. -Y.; Zhu, H. -L.; Zheng, S. -K.; Pan, F.; Wang, T. -M. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. ACS Appl. Mater. Interf. 2009, 1, 2111-2114.

9

Bessekhouad, Y.; Robert, D.; Weber, J. V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today 2005, 101, 315-321.

10

Ho, J. -Y.; Huang, M. H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 2009, 113, 14159-14164.

11

Le, D.; Stolbov, S.; Rahman, T. S. Reactivity of the Cu2O(100) surface: Insights from first principles calculations. Surf. Sci. 2009, 603, 1637-1645.

12

Kim, J. Y.; Park, J. C.; Kim, A.; Kim, A. Y.; Lee, H. J.; Song, H.; Park, K. H. Cu2O Nanocube-catalyzed crosscoupling of aryl halides with phenols via Ullmann coupling. Eur. J. Inorg. Chem. 2009, 2009, 4219-4223.

13

Son, S. U.; Park, I. K.; Park, J.; Hyeon, T. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 2004, 778-779.

14

Gou, L. F.; Murphy, C. J. Solution-phase synthesis of Cu2O nanocubes. Nano Lett. 2002, 3, 231-234.

15

Wang, D. B.; Mo, M. S.; Yu, D. B.; Xu, L. Q.; Li, F. Q.; Qian, Y. T. Large-scale growth and shape evolution of Cu2O cubes. Cryst. Growth Des. 2003, 3, 717-720.

16

Gou, L. F.; Murphy, C. J. Controlling the size of Cu2O nanocubes from 200 to 25 nm. J. Mater. Chem. 2004, 14, 735-738.

17

Xu, H. L.; Wang, W. Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 2007, 46, 1489-1492.

18

Xu, L.; Jiang, L. P.; Zhu, J. J. Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures. Nanotechnology 2009, 20, 045605.

19

Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Roomtemperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910-1914.

20

Kuo, C. H.; Hua, T. E.; Huang, M. H. Au nanocrystaldirected growth of Au-Cu2O core-shell heterostructures with precise morphological control. J. Am. Chem. Soc. 2009, 131, 17871-17878.

21

Zhong, L. S.; Hu, J. S.; Cui, Z. M.; Wan, L. J.; Song, W. G. In-situ loading of noble metal nanoparticles on hydroxylgroup-rich titania precursor and their catalytic applications. Chem. Mater. 2007, 19, 4557-4562.

22

Zhong, L. S.; Hu, J. S.; Wan, L. J.; Song, W. G. Facile synthesis of nanoporous anatase spheres and their environmental applications. Chem. Commun. 2008, 1184-1186.

23

Beletskaya, I. P.; Cheprakov, A. V. Copper in cross-coupling reactions: The post-Ullmann chemistry. Coord. Chem. Rev. 2004, 248, 2337-2364.

24

Ley, S. V.; Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation. Angew. Chem. Int. Ed. 2003, 42, 5400-5449.

25

Ma, D. W.; Cai, Q. N, N-Dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides. Org. Lett. 2003, 5, 3799-3802.

Publication history
Copyright
Rights and permissions

Publication history

Received: 11 August 2010
Revised: 08 September 2010
Accepted: 08 September 2010
Published: 12 October 2010
Issue date: November 2010

Copyright

© The Author(s) 2010

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return