Journal Home > Volume 3 , Issue 10

Hexagonal and triangular Au microplates extending over an area of ~12, 000 μm2 with thickness in the range 30–1000 nm have been synthesized using a single step thermolysis of (AuCl4)–tetraoctylammonium bromide complex in air. The microplates are self-supporting and can be easily manipulated using a sharp pin, a property which enables them to serve as substrates for living cells. The microplate surface is non-toxic to living cells and can enhance the fluorescence signal from fluorophores residing within the cell by an order of magnitude. In addition, the microplates are smooth and single-crystalline, and ideal as microscopy substrates and molecular electrodes. The growth of the microplates in the initial stages is interesting in that they seem to grow perpendicular to the substrate, as evidenced by in situ microscopy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Movable Au Microplates as Fluorescence Enhancing Substrates for Live Cells

Show Author's information Boya Radha1Mohammed Arif2Ranjan Datta3Tapas K. Kundu2Giridhar U. Kulkarni1( )
Chemistry and Physics of Materials Unit and DST Unit on NanoscienceJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur P.O.Bangalore560064India
Molecular Biology and Genetics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur P.O.Bangalore560064India
International Centre for Materials ScienceJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur P.O.Bangalore560064India

Abstract

Hexagonal and triangular Au microplates extending over an area of ~12, 000 μm2 with thickness in the range 30–1000 nm have been synthesized using a single step thermolysis of (AuCl4)–tetraoctylammonium bromide complex in air. The microplates are self-supporting and can be easily manipulated using a sharp pin, a property which enables them to serve as substrates for living cells. The microplate surface is non-toxic to living cells and can enhance the fluorescence signal from fluorophores residing within the cell by an order of magnitude. In addition, the microplates are smooth and single-crystalline, and ideal as microscopy substrates and molecular electrodes. The growth of the microplates in the initial stages is interesting in that they seem to grow perpendicular to the substrate, as evidenced by in situ microscopy.

Keywords: synthesis, metal enhanced fluorescence, Au microplates, cell substrate, manipulation

References(31)

1

Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

2

Tapan, K. S.; Andrey, L. R. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.

3

Sajanlal, P. R.; Pradeep, T. Mesoflowers: A new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res. 2009, 2, 306–320.

4

Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.

5

Sun, X.; Dong, S.; Wang, E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed. 2004, 43, 6360–6363.

6

Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 2005, 17, 566–572.

7

Wiley, B. J.; Lipomi, D. J.; Bao, J.; Capasso, F.; Whitesides, G. M. Fabrication of surface plasmon resonators by nano-skiving single-crystalline gold microplates. Nano Lett. 2008, 8, 3023–3028.

8

Li, W.; Ma, H.; Zhang, J.; Liu, X.; Feng, X. Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. J. Phys. Chem. C 2009, 113, 1738–1745.

9

Dahanayaka, D. H.; Wang, J. X.; Hossain, S.; Bumm, L. A. Optically transparent Au{111} substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. J. Am. Chem. Soc. 2006, 128, 6052–6053.

10

Sabur, A.; Havel, M.; Gogotsi, Y. SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. J. Raman Spec. 2008, 39, 61–67.

11

Li, C. C.; Cai, W. P.; Cao, B. Q.; Sun, F. Q.; Li, Y.; Kan, C. X.; Zhang, L. D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 2006, 16, 83–90.

12

Zhu, J.; Shen, Y.; Xie, A.; Qiu, L.; Zhang, Q.; Zhang, S. Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid. J. Phys. Chem. C 2007, 111, 7629–7633.

13

Li, Z.; Liu, Z.; Zhang, J.; Han, B.; Du, J.; Gao, Y.; Jiang, T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J. Phys. Chem. B 2005, 109, 14445–14448.

14

Kawasaki, H.; Yonezawa, T.; Nishimura, K.; Arakawa, R. Fabrication of submillimeter-sized gold plates from thermal decomposition of HAuCl4 in two-component ionic liquids. Chem. Lett. 2007, 36, 1038–1039.

15

Ha, T. H.; Kim, Y. J.; Park, S. H. Complete separation of triangular gold nanoplates through selective precipitation under CTAB micelles in aqueous solution. Chem Comm. 2010, 46, 3164–3166.

16

Voigtlander, B.; Linke, U.; Stollwerk, H.; Brona, J. Preparation of bead metal single crystals by electron beam heating. J. Vac. Sci. Tech. 2005, 23, 1535–1537.

17

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.

18

Yun, Y. J.; Park, G.; Ah, C. S.; Park, H. J.; Yun, W. S.; Ha, D. H. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates. Appl. Phys. Lett. 2005, 87, 233110.

19

Bai, X.; Zheng, L.; Li, N.; Dong, B.; Liu, H. Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid. Cryst. Growth Des. 2008, 8, 3840–3846.

20

Xie, J.; Lee, J. Y.; Wang, D. I. C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J. Phys. Chem. C 2007, 111, 10226–10232.

21

Yukselici, M. H. Growth kinetics of CdSe nanoparticles in glass. J. Phys. —Condens. Mat. 2002, 14, 1153–1162.

22
Ishihara, H.; Kuribayashi, K.; Takeuchi, S. Arraying single adherent cells by microplate self-assembly. In Micro Electro Mechanical Systems. IEEE 22nd International Conference on MEMS, 25–29 Jan. 2009, pp. 367–370.https://doi.org/10.1109/MEMSYS.2009.4805395
DOI
23

Onoe, H.; Takeuchi, S. Microfabricated mobile microplates for handling single adherent cells. J. Micromech. Microeng. 2008, 18, 095003.

24

Veiseh, M.; Wickes, B. T.; Castner, D. G.; Zhang, M. Guided cell patterning on gold–silicon dioxide substrates by surface molecular engineering. Biomaterials 2004, 25, 3315–3324.

25

Yousaf, M. N.; Houseman, B. T.; Mrksich, M. Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl. Acad. Sci. USA 2001, 98, 5992–5996.

26

Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P. P. Neurons sense nanoscale roughness with nanometer sensitivity. Proc. Natl. Acad. Sci. USA 2010, 107, 6264–6269.

27

Moal, E. L.; Fort, E.; Levque-Fort, S.; Cordelières, F. P.; Fontaine-Aupart, M. P.; Ricolleau, C. Enhanced fluorescence cell imaging with metal-coated slides. Biophys. J. 2007, 92, 2150–2161.

28

Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D. Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotech. 2005, 16, 55–62.

29

Zhang, J.; Fu, Y.; Liang, D.; Zhao, R. Y.; Lakowicz, J. R. Enhanced fluorescence images for labeled cells on silver island films. Langmuir 2008, 24, 12452–12457.

30

Jia, C. L.; Lentzen, M.; Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 2003, 299, 870–873.

31

Selvi, B. R.; Jagadeesan, D.; Suma, B. S.; Nagashankar, G.; Arif, M.; Balasubramanyam, K.; Eswaramoorthy, M.; Kundu, T. K. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: Delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 2008, 8, 3182–3188.

File
nr-3-10-738_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 July 2010
Revised: 24 August 2010
Accepted: 31 August 2010
Published: 21 September 2010
Issue date: October 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors thank Professor C. N. R. Rao for his constant encouragement. Support from the Department of Science and Technology, India is gratefully acknowledged. The authors acknowledge Dr. Basavaraj, Veeco Lab, JNCASR, India for technical assistance. B. Radha thanks the Council of Scientific and Industrial Research, India for financial assistance.

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return