Journal Home > Volume 3 , Issue 10

Lanthanide-based upconversion nanoparticles (UCNPs) have been widely explored in various fields, including optical imaging, in recent years. Although earlier work has shown that UCNPs with different lanthanide (Ln3+) dopants exhibit various colors, multicolor—especially in vivo multiplexed biomedical imaging—using UCNPs has rarely been reported. In this work, we synthesize a series of UCNPs with different emission colors and functionalize them with an amphiphilic polymer to confer water solubility. Multicolor in vivo upconversion luminescence (UCL) imaging is demonstrated by imaging subcutaneously injected UCNPs and applied in multiplexed in vivo lymph node mapping. We also use UCNPs for multicolor cancer cell labeling and realize in vivo cell tracking by UCL imaging. Moreover, for the first time we compare the in vivo imaging sensitivity of quantum dot (QD)-based fluorescence imaging and UCNP-based UCL imaging side by side, and find the in vivo detection limit of UCNPs to be at least one order of magnitude lower than that of QDs in our current non-optimized imaging system. Our data suggest that, by virtue of their unique optical properties, UCNPs have great potential for use in highly-sensitive multiplexed biomedical imaging.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles

Show Author's information Liang Cheng1Kai Yang1Shuai Zhang1Mingwang Shao1( )Shuittong Lee2Zhuang Liu1
Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesInstitute of Functional Nano and Soft MaterialsSoochow UniversitySuzhouJiangsu215123China
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials ScienceCity University of Hong KongHong KongChina

Abstract

Lanthanide-based upconversion nanoparticles (UCNPs) have been widely explored in various fields, including optical imaging, in recent years. Although earlier work has shown that UCNPs with different lanthanide (Ln3+) dopants exhibit various colors, multicolor—especially in vivo multiplexed biomedical imaging—using UCNPs has rarely been reported. In this work, we synthesize a series of UCNPs with different emission colors and functionalize them with an amphiphilic polymer to confer water solubility. Multicolor in vivo upconversion luminescence (UCL) imaging is demonstrated by imaging subcutaneously injected UCNPs and applied in multiplexed in vivo lymph node mapping. We also use UCNPs for multicolor cancer cell labeling and realize in vivo cell tracking by UCL imaging. Moreover, for the first time we compare the in vivo imaging sensitivity of quantum dot (QD)-based fluorescence imaging and UCNP-based UCL imaging side by side, and find the in vivo detection limit of UCNPs to be at least one order of magnitude lower than that of QDs in our current non-optimized imaging system. Our data suggest that, by virtue of their unique optical properties, UCNPs have great potential for use in highly-sensitive multiplexed biomedical imaging.

Keywords: Upconversion nanoparticles, multicolor imaging, lymphatic mapping, cell tracking, sensitive imaging

References(38)

1

Gao, X.; Gao, Y.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

2

Goldman, E. R.; Clapp, A. R.; Anderson, G. P.; Uyeda, H. T.; Mauro, J. M.; Medintz, I. L.; Mattoussi, H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 2004, 76, 684–688.

3

Liu, Z.; Li, X.; Tabakman, S. M.; Jiang, K.; Fan, S.; Dai, H. Multiplexed multi-color Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 13540–13541.

4

Liu, Z.; Tabakman, S.; Sherlock, S.; Li, X.; Chen, Z.; Jiang, K.; Fan, S.; Dai, H. Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano Res. 2010, 3, 222–223.

5

Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635.

6

Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

7

Sandrock, T.; Scheife, H.; Heumann, E.; Hube, G. High-power continuous-wave upconversion fiber laser at room temperature. Opt. Lett. 1997, 22, 808–810.

8

Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 1996, 273, 1185–1189.

9

Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Pras, P. N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 2009, 19, 853–859.

10

Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057.

11

Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191–2196.

12

Mai, H.; Zhang, Y.; Si, R.; Yan, Z.; Sun, L.; You, L.; Yan, C. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.

13

Wang, L. Y.; Zhang, Y.; Zhu, Y. Y. One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3: Yb3+/Er3+ nanocrystals. Nano Res. 2010, 3, 317–325.

14

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

15

Yu, M. X.; Li, F. Y.; Chen, Z. G.; Hu, H.; Zhan, C.; Yang, H.; Huang, C. H. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 2009, 81, 930–935.

16

Waynant, R. W.; Ilev, I. K.; Gannot, I. Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. London Ser. A 2001, 359, 635–644.

17

Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.

18

Mai, H.; Zhang, Y.; Sun, L.; Yan, C. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 2007, 111, 13721–13729.

19

Jalil, R. A.; Zhang, Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 2008, 29, 4122–4128.

20

Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photo-luminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nano-phosphors. Nano Lett. 2008, 8, 3834–3838.

21

Xiong, L.; Chen, Z.; Tian, Q.; Cao, T.; Xu, C.; Li, F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 2009, 81, 8687–8694.

22

Xiong, L. Q.; Chen, Z. G.; Yu, M. X.; Li, F. Y.; Liu, C.; Huang, C. H. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 2009, 30, 5592–5600.

23

Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.

24

Yin, A. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals. Nanoscale 2010, 2, 953–959.

25

Kobayashi, H.; Kosaka, N.; Ogawa, M.; Morgan, N. Y.; Smith, P. D.; Murray, C. B.; Ye, X.; Collins, J.; Kumar, G. A.; Bell, H.; Choyke, P. L. In vivo multiple color lymphatic imaging using upconverting nanocrystals. J. Mater. Chem. 2009, 19, 6481–6484.

26

Liu, C.; Wang, H.; Li, X.; Chen, D. Monodisperse, size-tunable and highly efficient β-NaYF4: Yb, Er(Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications. J. Mater. Chem. 2009, 19, 3546–3553.

27

Zhou, M.; Nakatani, E.; Gronenberg, L. S.; Tokimoto, T.; Wirth, M. J.; Hruby, V. J.; Roberts, A.; Lynch, R. M.; Ghosh, I. Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconjugate Chem. 2007, 18, 323–332.

28

von Maltzahn, G.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69, 3892–3900.

29

Moon, H. K.; Lee, S. H.; Choi, H. C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3, 3707–3713.

30

Kobayashi, H.; Hama, Y.; Koyama, Y.; Barrett, T.; Regino, C. A. S.; Urano, Y.; Choyke, P. L. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 2007, 7, 1711–1716.

31

Yang, S.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.

32

Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

33

Pyatenko, Y. A.; Voronkov, A. A. The formula of gagarinite. J. Struct. Chem. 1962, 3, 696–697.

34

Kobayashi, H.; Koyama, Y.; Barrett, T.; Hama, Y.; Regino, C. A. S.; Shin, I. S.; Jang, B. S.; Le, N.; Paik, C. H.; Choyke, P. L.; Urano, Y. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 2007, 1, 258–264.

35

Lo Celso, C.; Fleming, H. E.; Wu, J. W.; Zhao, C. X.; Miake-Lye, S.; Fujisaki, J.; Cote, D.; Rowe, D. W.; Lin, C. P.; Scadden, D. T. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009, 457, 92–96.

36

Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 2008, 453, 345–351.

37

Li, Z. Q.; Zhang, Y.; Jiang, S. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 2008, 20, 4765–4769.

38
See: http://www.caliperls.com/assets/011/6716.pdf
File
nr-3-10-722_ESM.pdf (900 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 July 2010
Revised: 18 August 2010
Accepted: 22 August 2010
Published: 21 September 2010
Issue date: October 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the research start-up fund of Soochow University and the Research Grants Council of Hong Kong SAR (No. CityU5/CRF/08). We thank Dr. Yaping Du and Prof. Qiangbin Wang from Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, for helpful discussions and assistance in TEM characterization. The confocal microscope images were recorded with help from Leica Microsystems Ltd.

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return