Journal Home > Volume 3 , Issue 10

Flexible organic field-effect transistors (OFETs) using solution-processable functionalized graphene for all the electrodes (source, drain, and gate) have been fabricated for the first time. These OFETs show performance comparable to corresponding devices using Au electrodes as the source/drain electrodes on SiO2/Si substrates with Si as the gate electrode. Also, these devices demonstrate excellent flexibility without performance degradation over severe bending cycles. Furthermore, inverter circuits have been designed and fabricated using these all-graphene-electrode OFETs. Our results demonstrate that the long-sought dream for all-carbon and flexible electronics is now much closer to reality.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Towards Flexible All-Carbon Electronics: Flexible Organic Field-Effect Transistors and Inverter Circuits Using Solution-Processed All-Graphene Source/Drain/Gate Electrodes

Show Author's information Yongsheng Chen1( )Yanfei Xu1Kai Zhao2Xiangjian Wan1Jiachun Deng2Weibo Yan1
Key Laboratory of Functional Polymer Materials and Center for Nanoscale Science & TechnologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
Key Laboratory of Display Materials and Photoelectric DevicesInstitute of Material PhysicsTianjin University of TechnologyTianjin300384China

Abstract

Flexible organic field-effect transistors (OFETs) using solution-processable functionalized graphene for all the electrodes (source, drain, and gate) have been fabricated for the first time. These OFETs show performance comparable to corresponding devices using Au electrodes as the source/drain electrodes on SiO2/Si substrates with Si as the gate electrode. Also, these devices demonstrate excellent flexibility without performance degradation over severe bending cycles. Furthermore, inverter circuits have been designed and fabricated using these all-graphene-electrode OFETs. Our results demonstrate that the long-sought dream for all-carbon and flexible electronics is now much closer to reality.

Keywords: flexibility, Solution processing, all-graphene-electrode OFETs, inverter circuits

References(48)

1

Braga, D.; Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 2009, 21, 1473–1486.

2

Burghard, M.; Klauk, H.; Kern, K. Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 2009, 21, 2586–2600.

3

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

4

Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516–1519.

5

Kushmerick, J. Molecular transistors scrutinized. Nature 2009, 462, 994–995.

6

Sun, Y. M.; Liu, Y. Q.; Zhu, D. B. Advances in organic field-effect transistors. J. Mater. Chem. 2005, 15, 53–65.

7

Muccini, M. A bright future for organic field-effect transistors. Nat. Mater. 2006, 5, 605–613.

8

Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem., Int. Ed. 2008, 47, 4070–4098.

9

Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H. S.; Choi, W. M.; Kim, D. H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 2008, 47, 5524–5542.

10

Liu, P.; Wu, Y. L.; Li, Y. N.; Ong, B. S.; Zhu, S. P. Enabling gate dielectric design for all solution-processed, high-performance, flexible organic thin-film transistors. J. Am. Chem. Soc. 2006, 128, 4554–4555.

11

Ortiz, R. P.; Facchetti, A.; Marks, T. J. High-κ organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 2010, 110, 205–239.

12

Facchetti, A.; Yoon, M. H.; Marks, T. J. Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 2005, 17, 1705–1725.

13

Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 2008, 20, 3289–3293.

14

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

15

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

16

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

17

Liu, Z. F.; Liu, Q.; Huang, Y.; Ma, Y. F.; Yin, S. G.; Zhang, X. Y.; Sun, W.; Chen, Y. S. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 2008, 20, 3924–3930.

18

Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 2009, 9, 814–818.

19

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

20

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

21

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

22

Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

23

Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430–3434.

24

Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

25

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

26

Wang, Y.; Chen, X. H.; Zhong, Y. L.; Zhu, F. R.; Loh, K. P. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 2009, 95, 063302.

27

Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.

28

Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

29

Wang, S. A.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 2010, 10, 92–98.

30

Pang, S. P.; Tsao, H. N.; Feng, X. L.; Mullen, K. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv. Mater. 2009, 21, 3488–3491.

31

Cao, Y.; Steigerwald, M. L.; Nuckolls, C.; Guo, X. F. Current trends in shrinking the channel length of organic transistors down to the nanoscale. Adv. Mater. 2010, 22, 20–32.

32

Lee, C. G.; Park, S.; Ruoff, R. S.; Dodabalapur, A. Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett. 2009, 95 023304.

33

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

34

Jin, M.; Jeong, H. K.; Yu, W. J.; Bae, D. J.; Kang, B. R.; Lee, Y. H. Graphene oxide thin film field effect transistors without reduction. J. Phys. D: Appl. Phys. 2009, 42, 135109.

35

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

36

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

37

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

38

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

39

Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

40

Qian, Z. K.; Hou, S. M.; Ning, J.; Li, R.; Shen, Z. Y.; Zhao, X. Y.; Xue, Z. Q. First-principles calculation on the conductance of a single 1, 4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes. J. Chem. Phys. 2007, 126, 084705.

41

Cao, Y.; Liu, S.; Shen, Q.; Yan, K.; Li, P. J.; Xu, J.; Yu, D. P.; Steigerwald, M. L.; Nuckolls, C.; Liu, Z. F., et al. High-performance photoresponsive organic nanotransistors with single-layer graphenes as two-dimensional electrodes. Adv. Funct. Mater. 2009, 19, 2743–2748.

42

Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.

43

Fukuda, K.; Sekitani, T.; Someya, T. Effects of annealing on electronic and structural characteristics of pentacene thin-film transistors on polyimide gate dielectrics. Appl. Phys. Lett. 2009, 95, 023302.

44

Kato, Y.; Iba, S.; Teramoto, R.; Sekitani, T.; Someya, T.; Kawaguchi, H.; Sakurai, T. High mobility of pentacene field-effect transistors with polyimide gate dielectric layers. Appl. Phys. Lett. 2004, 84, 3789–3791.

45

Graz, I. M.; Lacour, S. P. Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes. Appl. Phys. Lett. 2009, 95, 243305.

46

Ramprasad, R.; von Allmen, P.; Fonseca, L. R. C. Contributions to the work function: A density-functional study of adsorbates at graphene ribbon edges. Phys. Rev. B 1999, 60, 6023–6027.

47

Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Gate insulators in organic field-effect transistors. Chem. Mater. 2004, 16, 4543–4555.

48

Di, C. A.; Liu, Y. Q.; Yu, G.; Zhu, D. B. Interface engineering: An effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 2009, 42, 1573–1583.

File
nr-3-10-714_ESM.pdf (656.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 August 2010
Revised: 20 August 2010
Accepted: 22 August 2010
Published: 21 September 2010
Issue date: October 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of china (NSFC)(Nos. 50933003, 20774047), the Ministry of Science and Technology of the People's Repulic of China (MOST)(No. 2009AA032304), and Natural Science Foundation (NSF) of Tianjin City (No. 08JCZDJC25300).

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return