Journal Home > Volume 3 , Issue 10

Contactless monitoring with photoelectron microspectroscopy of the surface potential along individual nano-structures, created by the X-ray nanoprobe, opens exciting possibilities to examine quantitatively size- and surface-chemistry-effects on the electrical transport of semiconductor nanowires (NWs). Implementing this novel approach—which combines surface chemical microanalysis with conductivity measurements—we explored the dependence of the electrical properties of undoped GaAs NWs on the NW width, temperature and surface chemistry. By following the evolution of the Ga 3d and As 3d core level spectra, we measured the position-dependent surface potential along the GaAs NWs as a function of NW diameter, decreasing from 120 to ~20 nm, and correlated the observed decrease of the conductivity with the monotonic reduction in the NW diameter from 120 to ~20 nm. Exposure of the GaAs NWs to oxygen ambient leads to a decrease in their conductivity by up to a factor of 10, attributed to the significant decrease in the carrier density associated with the formation of an oxide shell.


menu
Abstract
Full text
Outline
About this article

Contactless Monitoring of the Diameter-Dependent Conductivity of GaAs Nanowires

Show Author's information Fauzia Jabeen1,2Silvia Rubini2( )Faustino Martelli2Alfonso Franciosi1,2Andrei Kolmakov3Luca Gregoratti1Matteo Amati1Alexei Barinov1Andrea Goldoni1Maya Kiskinova1( )
Sincrotrone Trieste S. C. P. A.Elettra LaboratoryArea Science ParkS. S. 14, Km. 163.5TriesteI-34149Italy
Laboratorio TASC IOM-CNRArea Science ParkS. S. 14, Km. 163.5TriesteI-34149Italy
Department of PhysicsSouthern Illinois University Carbondale1245 Lincoln Dr. Neckers 478CarbondaleIL 62901-4401USA

Abstract

Contactless monitoring with photoelectron microspectroscopy of the surface potential along individual nano-structures, created by the X-ray nanoprobe, opens exciting possibilities to examine quantitatively size- and surface-chemistry-effects on the electrical transport of semiconductor nanowires (NWs). Implementing this novel approach—which combines surface chemical microanalysis with conductivity measurements—we explored the dependence of the electrical properties of undoped GaAs NWs on the NW width, temperature and surface chemistry. By following the evolution of the Ga 3d and As 3d core level spectra, we measured the position-dependent surface potential along the GaAs NWs as a function of NW diameter, decreasing from 120 to ~20 nm, and correlated the observed decrease of the conductivity with the monotonic reduction in the NW diameter from 120 to ~20 nm. Exposure of the GaAs NWs to oxygen ambient leads to a decrease in their conductivity by up to a factor of 10, attributed to the significant decrease in the carrier density associated with the formation of an oxide shell.

Keywords: charge transport, GaAs, Semiconductor nanowires, surface oxidation, photoelectron X-ray microscopy, charging

References(34)

1

Hayden, O.; Agarwal, R.; Lu, W. Semiconductor nanowire devices. Nanotoday 2008, 3, 12–22.

2

Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mat. 2007, 19, 1897–1916.

3

Lu, W.; Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 2006, 39, R387–R406.

4

Dimitriev, S.; Lilach, Y.; Button, B.; Moskovits, M.; Kolmakov, A. Nanoengineered chemiresistors: The interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires. Nanotechnology 2007, 18, 055707.

5

Zhang, S.; Hemesath, E. R.; Perea, D. E.; Wijaya, E.; Lensch-Falk, J. L.; Lauhon, L. J. Relative influence of surface states and bulk impurities on the electrical properties of Ge nanowires. Nano Lett. 2009, 9, 3268–3274.

6

Wang, D.; Chang, Y. L.; Wang, Q.; Cao, J.; Farmer, D. B.; Gordon, R. G.; Dai, H. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 2004, 126, 11602–11611.

7

Motayed, A.; Vaudin, M.; Davydov, A. V.; Melngailis, J.; He, M.; Mohammad, S. N. Diameter dependent transport properties of gallium nitride nanowire field effect transistors. Appl. Phys. Lett. 2007, 90, 043104.

8

Ford, A. C.; Ho, L. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.

9

Khanal, D. R.; Yim, J. W. L.; Walukiewicz, W.; Wu, J. Effects of quantum confinement on the doping limit of semiconductor nanowires. Nano Lett. 2008, 7, 1186–1190.

10

Perea, D. A.; Hernesath, E. R.; Schwalbach, E. J.; Lensch-Falk, J. L.; Voorhees, P. W.; Lauhon, L. J. Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nat. Nanotechnol. 2009, 4, 315–319.

11

Simpkins, B. S.; Mastro, M. A.; Eddy, C. R.; Pehrsson, P. E. Surface depletion effects in semiconducting nanowires. J. Appl. Phys. 2008, 103, 104313.

12

Dong, A.; Yu, H.; Wang, F.; Buhro, W. E. Colloidal GaAs quantum wires: Solution–liquid–solid synthesis and quantum-confinement studies. J. Am. Chem. Soc. 2008, 130, 5954–5961.

13

Pan, H.; Feng, Y. P. Semiconductor nanowires and nanotubes: Effects of size and surface-to-volume ratio. ACS Nano 2008, 2, 2410–2414.

14

Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; Hart, A. V. D.; Stoica, T.; Lüth, H. Size-dependent photoconductivity in MBE-grown GaN nanowires. Nano Lett. 2005, 5, 981–984.

15

Schricker, A. D.; Davidson, F. M.; Wiacek, R. J.; Korgel, B. A.; Space charge limited currents and trap concentrations in GaAs nanowires. Nanotechnology 2006, 17, 2681–2688.

16

Elfstrom, N.; Juhasz, R.; Sychogov, I.; Engfeldt, T.; Karlstrom, A. E.; Linnros, J. Surface charge sensitivity of silicon nanowires: Size dependence. Nano Lett. 2007, 7, 2608–2612.

17

Chen, H. Y.; Chen, R. S.; Chang, F. C.; Chen, L. C.; Chen, K. H.; Yang, Y. J. Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter. Appl. Phys. Lett. 2009, 95, 143123.

18

Gu, W.; Choi, H.; Kim, K. Universal approach to accurate resistivity measurement for a single nanowire: Theory and application. Appl. Phys. Lett. 2006, 89, 253102.

19

Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Material Properties; Springer-Verlag: Berlin, 2001; pp 464.

20

Schubert, E.; Razek, N.; Frost, F.; Schindler, A.; Rauschenbach, B. GaAs surface cleaning by low-energy hydrogen ion bombardment at moderate temperatures. J. Appl. Phys. 2005, 97, 023511.

21

Margaritondo, G. Synchrotron light in semiconductor research: Three decades of revolution. J. Phys. IV 2006, 132, 23–29.

22

Barinov, A.; Üstünel, H.; Fabris, S.; Gregoratti, L.; Aballe, L.; Dudin, P.; Baroni, S.; Kiskinova, M. Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces. Phys. Rev. Lett. 2007, 99, 046803.

23

Kolmakov, A.; Potluri, S.; Barinov, A.; Menteş, T. O.; Gregoratti, L.; Niño, M. A.; Locatelli, A.; Kiskinova, M. Spectromicroscopy for addressing the surface and electron transport properties of individual 1-D nanostructures and their networks. ACS Nano 2008, 2, 1993–2000.

24

Barinov, A.; Gregoratti, L.; Dudin, P.; La Rosa, S.; Kiskinova, M. Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: Defects and oxygen bonding. Adv. Mater. 2009, 21, 1916–1920.

25

Barinov, A.; Dudin, P.; Gregoratti, L.; Locatelli, A.; Menteş, T. O.; Niño, M. A.; Kiskinova, M. Synchrotron-based photoelectron microscopy. Nucl. Instr. Meth. Phys. Res. A 2009, 601, 195–202.

26

Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electr. Spectr. Rel. Phenom. 1999, 105, 155–185.

27

Cazaux, J. Secondary electron emission and fundamentals of charging mechanisms in XPS. J. Electr. Spectr. Rel. Phenom. 2010, 178–179, 357–372.

28

Günther, S.; Kolmakov, A.; Kovac, J.; Kiskinova, M. Artefact formation in scanning photoelectron emission microscopy. Ultramicroscopy 1998, 75, 35–51.

29

de Groot, F.; Kotani, F. A. Core Level Spectroscopy of Solids (Advances in Condensed Matter Science Vol. 6); Taylor and Francis: New York, 2008; pp 231.

DOI
30

Piccin, M.; Bais, G.; Grillo, V.; Jabeen, F.; de Franceschi, S.; Carlino, E.; Lazzarino, M.; Romanato, F.; Businaro, L.; Rubini, S.; Martelli, F.; Franciosi, A. Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires. Physica E 2007, 37, 134–137.

31

Hale, M. J.; Yi, S. I.; Sexton, J. Z.; Kummel, A. C.; Passlack, M. Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2×8)/(2×4). J. Chem. Phys. 2003, 119, 6719–6728.

32

Palomares, F. J.; Alonso, M.; Jimenez, I.; Avila, J.; Sacedon, J. L.; Soria, F. Electron beam induced reactions of O2/GaAs interface. Surf. Sci. 2001, 482–485, 121127.

33

Mori, G.; Lazzarino, M.; Ercolani, D.; Sorba, L.; Heun, S.; Locatelli, A. Desorption dynamics of oxide nanostructures fabricated by local anodic oxidation nanolithography. J. Appl. Phys. 2005, 97, 114324.

34

Gonska, H.; Freund, H. J.; Hohlneicher, G. On the importance of photoconduction in ESCA experiments. J. Electr. Spec. Rel. Phenom. 1977, 12, 435–441.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 July 2010
Revised: 12 August 2010
Accepted: 12 August 2010
Published: 21 September 2010
Issue date: October 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This project was funded by Friuli Venezia Giulia L.R. 47/78-1953 Ambient and Biological Sensors. Participation of AK was supported through National Science Foundation (NSF) No. ECCS-0925837 grant. We thank Majid Kazemian Abyaneh for critical reading of the manuscript.

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return