Journal Home > Volume 3 , Issue 10

We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-two-dimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum molecular dynamics simulations show that the stand-alone bilayer silicon (without the confinement) is still stable at 400 K. Electronic band-structure calculations suggest that the bilayer hexagonal silicon is a quasi-2D semimetal, similar to a graphene monolayer, but with an indirect zero band gap.


menu
Abstract
Full text
Outline
About this article

Graphene-Like Bilayer Hexagonal Silicon Polymorph

Show Author's information Jaeil Bai1Hideki Tanaka2Xiao Cheng Zeng1( )
Department of Chemistry and Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnNebraska68588USA
Department of ChemistryOkayama UniversityOkayama700-8530Japan

Abstract

We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-two-dimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum molecular dynamics simulations show that the stand-alone bilayer silicon (without the confinement) is still stable at 400 K. Electronic band-structure calculations suggest that the bilayer hexagonal silicon is a quasi-2D semimetal, similar to a graphene monolayer, but with an indirect zero band gap.

Keywords: Bilayer hexagonal silicon, slit pore, semimetal, two-dimensional polymorph

References(41)

1

Harrison, P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics; Wiley: New York, 2000.

2

Jank, W.; Hafner, J. Structural and electronic properties of the liquid polyvalent elements: The group-IV elements Si, Ge, Sn, and Pb. Phys. Rev. B 1990, 41, 1497–1515.

3

Jakse, N.; Henne, L.; Price, D. L.; Krishnan, S.; Key, T.; Artacho, E.; Glorieux, B.; Pasturel, A.; Saboungi, M. L. Structural changes on supercooling liquid silicon. Appl. Phys. Lett. 2003, 83, 4734–4736.

4

Sastry, S.; Angell, C. A.; Liquid–liquid phase transition in supercooled silicon. Nat. Mater. 2003, 2, 739–743.

5

Bai, J.; Zeng, X. C.; Tanaka, H.; Zeng, J. Y. Metallic single-walled silicon nanotubes. Proc. Natl. Acad. Sci. USA 2004, 101, 2664–2668.

6

Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805.

7

Ghosh, S.; Ramanathan, K. V.; Sood, A. K. Water at nano-scale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett. 2004, 65, 678–684.

8

Kolesnikov, A. I.; Zanotti, J. M.; Loong, K.; Thyagarajan, P.; Morsvsky, A. P.; Loutfy, R. O.; Burnham, C. J. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 2004, 93, 035503.

9

Maniwa, Y.; Kataura, H.; Abe, M.; Udaka, A.; Suzuki, S.; Achiba, Y.; Kira, H.; Matsuda, K.; Kadowaki, H.; Okabe, Y. Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 2005, 401, 534–538.

10

Byl, O.; Liu, J. C.; Wang, Y.; Yim, W. L; Johnson, J. K.; Yates, J. T. Jr. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 12090–12097.

11

Saranin, A. A.; Zotov, A. V.; Kotlyar, V. G.; Kasyanova, T. V.; Utas, O. A.; Okado, H.; Katayama, M.; Oura, K. Ordered arrays of Be-encapsulated Si nanotubes on Si(111) surface. Nano. Lett. 2004, 4, 1469–1473.

12

Koga, K.; Zeng, X. C.; Tanaka, H. Freezing of confined water: A bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett. 1997, 79, 5262–5265.

13

Koga, K.; Tanaka, H.; Zeng, X. C. First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature 2000, 408, 564–567.

14

Bai, J.; Zeng, X. C.; Koga, K.; Tanaka, H. Formation of quasi-two-dimensional bilayer ice in hydrophobic slit: A possible candidate for ice XIII? Mol. Simul. 2003, 29, 619–626.

15

Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.

16

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

17

Kresse, G.; Furthműller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

18
Bai, J. Novel Low Dimensional Silicon and Water Nano-structures. Ph. D. Dissertation, University of Nebraska-Lincoln, Lincoln, NE, USA, 2004.
19

Stillinger, F. H.; Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 1985, 31, 5262–5271.

20

Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568.

21
CASTEP is available from Accelrys Inc. http://accelrys.com/products/materials-studio/quantum-and-catalysis-software.html
22

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

23

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

24

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

25

Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824.

26

Lee, C.; Yang, W.; Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

27

Delly, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756.

28
DMol3 is available from Accelrys Inc. http://accelrys.com/products/materials-studio/quantum-and-catalysis-software.html
29

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

30

Katsnelson, M. L. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.

31

Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 1984, 53, 2449–2452.

32

Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly". Phys. Rev. Lett. 1984, 61, 2015–2018.

33

Nakano, H.; Mitsuoka, T.; Harada, M.; Horibuchi, K.; Nozaki, H.; Takahashi, N.; Nonaka, T.; Seno, Y.; Nakamura, H. Soft synthesis of single-crystal silicon monolayer sheets. Angew. Chem. Int. Ed. 2006, 45, 6303–6306.

34

Cahangirov, S.; Topsakal, M.; Aktűrk, E.; Şahin, H.; Ciraci, S. Honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, , 236804.

35

Lebègue, S.; Eriksson, O. Nonadiabatic potential-energy surfaces by constrained density-functional theory. Phys. Rev. B 2009, 79, 115409.

36

Wang, S. Studies of physical and chemical properties of two-dimensional hexagonal crystals by first-principles calculation. J. Phys. Soc. Japan, 2010, 79, 064602.

37

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

38

Ackland, G. J.; Warren, M. C.; Clark, S.J. Practical methods in ab initio lattice dynamics. J. Phys. : Condens. Matter. 1997, 9, 7861–7872.

39

Schulte-Fischedick, J.; Zern, A.; Mayer, J.; Rühle, M.; Frieß, M.; Krenkel, W. The morphology of silicon carbide in C/C–SiC composites. Mater. Sci. Eng. A 2002, 332, 146–152.

40

Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R. Reactive infiltration of silicon melt through microporous amorphous carbon preforms. Metall. Mater. Trans. B 1999, 30, 933–944.

41

Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnalek, Z.; Kay, B. D. No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 2009, 131, 12838–12844.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 June 2010
Revised: 03 August 2010
Accepted: 09 August 2010
Published: 21 September 2010
Issue date: October 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by grants from the Department of Energy (DOE) (No. DE-FG02-04ER46164), the Nebraska Research Initiative, and the University of Nebraska's Holland Computing Center.

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return