Journal Home > Volume 3 , Issue 9

Conducting polymer actuators that can undergo complex and coordinated motions are generally obtained by using complex microfabrication methods to pattern several conducting polymer components. Herein, we describe a facile approach for fabricating electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. The actuator can perform biomimetic movements like arm-hand coordination. In this case, a magnetic field is used for primary actuation like an arm, i.e., large-scale angular movement, and an electric potential is used for secondary adjustment like a hand, i.e., small-scale angular movement.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electromagnetic Synergetic Actuators Based on Polypyrrole/Fe3O4 Hybrid Nanotube Arrays

Show Author's information Mingjie Liu2,3Xueli Liu1,3Jingxia Wang1Zhixiang Wei2( )Lei Jiang1( )
Center of Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijing100190China
National Center for Nanoscience and TechnologyBeijing100190China
Graduate School of the Chinese Academy of SciencesBeijing100049China

Abstract

Conducting polymer actuators that can undergo complex and coordinated motions are generally obtained by using complex microfabrication methods to pattern several conducting polymer components. Herein, we describe a facile approach for fabricating electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. The actuator can perform biomimetic movements like arm-hand coordination. In this case, a magnetic field is used for primary actuation like an arm, i.e., large-scale angular movement, and an electric potential is used for secondary adjustment like a hand, i.e., small-scale angular movement.

Keywords: nanomaterials, Actuator, hybrid materials, electromagnet, synergetic

References(31)

1

Baughman, R. H. Playing nature's game with artificial muscles. Science 2005, 308, 63-65.

2

Jager, E. W. H.; Inganäs, O.; Lundstrom, I. Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science 2000, 288, 2335-2338.

3

Jager, E. W. H.; Smela, E.; Inganäs, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540-1545.

4

Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 2003, 15, 481-494.

5

Pei, Q. B.; Inganäs, O. Conjugated polymers as smart materials, gas sensors and actuators using bending beams. Synth. Met. 1993, 57, 3730-3735.

6

Otero, T. F.; Cortes, M. T. Artificial muscles with tactile sensitivity. Adv. Mater. 2003, 15, 279-282.

7

Berdichevsky, Y.; Lo, Y. H. Polypyrrole nanowire actuators. Adv. Mater. 2006, 18, 122-125.

8

He, X. M.; Li, C.; Chen, F. G.; Shi, G. Q. Polypyrrole microtubule actuators for seizing and transferring micro-particles. Adv. Funct. Mater. 2007, 17, 2911-2917.

9

Huang, J. Y.; Quan, B. G.; Liu, M. J.; Wei, Z. X.; Jiang, L. Conducting polypyrrole conical nanocontainers: Formation mechanism and voltage switchable property. Macromol. Rapid Commun. 2008, 29, 1335-1340.

10

Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340-1344.

11

Hughes, M.; Spinks, G. M. Multiwalled carbon-nanotube actuators. Adv. Mater. 2005, 17, 443-446.

12

Aliev, A. E.; Oh, J. Y.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575-1578.

13

Fukushima, T.; Asaka, K.; Kosaka, A.; Aida, T. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 2005, 44, 2410-2413.

14

Gu, G.; Schmid, M.; Chiu, P. W.; Minett, A.; Fraysse, J.; Kim, G. T.; Roth, S.; Kozlov, M.; Muñoz, E.; Baughman, R. H. V2O5 nanofibre sheet actuators. Nat. Mater. 2003, 2, 316-319.

15

Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034-2057.

DOI
16

Ha, S. M.; Yuan, W.; Pei, Q. B.; Pelrine, R.; Stanford, S. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv. Mater. 2006, 18, 887-891.

17

Pelrine, R.; Kornbluh, R.; Kofod, G., High-strain actuator materials based on dielectric elastomers. Adv. Mater. 2000, 12, 1223-1225.

DOI
18

Pelrine, R.; Kornbluh, R.; Pei, Q. B.; Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000, 287, 836-839.

19

Pei, Q. B.; Inganäs, O. Electrochemical applications of the bending beam method. 1. Mass-transport and volume changes in polypyrrole during redox. J. Phys. Chem. 1992, 96, 10507-10514.

20

Pei, Q. B.; Inganäs, O. Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole. J. Phys. Chem. 1993, 97, 6034-6041.

21

John, R.; Wallace, G. G. Doping dedoping of polypyrrole—a study using current-measuring and resistance-measuring techniques. J. Electroanal. Chem. 1993, 354, 145-160.

22

Smela, E.; Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Adv. Mater. 1999, 11, 953-957.

DOI
23

Baughman, R. H. Conducting polymer artificial muscles. Synth. Met. 1996, 78, 339-353.

24

Gomez-Romero, P. Hybrid organic-inorganic materials—In search of synergic activity. Adv. Mater. 2001, 13, 163-174.

DOI
25

Chen, C. C.; Bose, C. S. C.; Rajeshwar, K. The reduction of dioxygen and the oxidation of hydrogen at polypyrrole film electrodes containing nanodispersed platinum particles. J. Electroanal. Chem. 1993, 350, 161-176.

26

Xu, J. J.; Hu, J. C.; Quan, B. G.; Wei, Z. X. Decorating polypyrrole nanotubes with Au nanoparticles by an in situ reduction process. Macromol. Rapid Commun. 2009, 30, 936-940.

27

Matsumra, M.; Ohno, T.; Saito, S.; Ochi, M. Photocatalytic electron and proton pumping across conducting polymer films loaded with semiconductor particles. Chem. Mater. 1996, 8, 1370-1374.

28

Matsumura, M.; Ohno, T. Concerted transport of electrons and protons across conducting polymer membranes. Adv. Mater. 1997, 9, 357-359.

29

Xu, J. J.; Hu, J. C.; Liu, X. F.; Qiu, X. H.; Wei, Z. X. Stepwise self-assembly of P3HT/CdSe hybrid nanowires with enhanced photoconductivity. Macromol. Rapid Commun. 2009, 30, 1419-1423.

30

Han, G. Y.; Shi, G. Q. Electrochemical actuator based on single-layer polypyrrole film. Sensor. Actuat. B-Chem. 2006, 113, 259-264.

31

Han, G. Y.; Shi, G. Q. High-response tri-layer electrochemical actuators based on conducting polymer films. J. Electroanal. Chem. 2004, 569, 169-174.

File
nr-3-9-670_ESM.pdf (169.1 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 July 2010
Accepted: 04 August 2010
Published: 09 September 2010
Issue date: September 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Research Fund for Fundamental Key Projects (Nos. 2010CB934700, 2009CB930400, and 2007CB936403), and the National Natural Science Foundation (Nos. 20974113 and 20601005). The Chinese Academy of Sciences is gratefully acknowledged. We thank L. Y. Liu for helpful discussion and technical support.

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return