Journal Home > Volume 3 , Issue 9

Porous carbon nitride (CN) spheres with partially crystalline frameworks have been successfully synthesized via a nanocasting approach by using spherical mesoporous cellular silica foams (MCFs) as a hard template, and ethylenediamine and carbon tetrachloride as precursors. The resulting spherical CN materials have uniform diameters of ca. 4 μm, hierarchical three-dimensional (3-D) mesostructures with small and large mesopores with pore diameters centered at ca. 4.0 and 43 nm, respectively, a relatively high BET surface area of ~550 m2/g, and a pore volume of 0.90 cm3/g. High-resolution transmission electron microscope (HRTEM) images, wide-angle X-ray diffraction (XRD) patterns, and Raman spectra demonstrate that the porous CN material has a partly graphitized structure. In addition, elemental analyses, X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), and CO2 temperature-programmed desorption (CO2-TPD) show that the material has a high nitrogen content (17.8 wt%) with nitrogen-containing groups and abundant basic sites. The hierarchical porous CN spheres have excellent CO2 capture properties with a capacity of 2.90 mmol/g at 25 ℃ and 0.97 mmol/g at 75 ℃, superior to those of the pure carbon materials with analogous mesostructures. This can be mainly attributed to the abundant nitrogen-containing basic groups, hierarchical mesostructure, relatively high BET surface area and stable framework. Furthermore, the presence of a large number of micropores and small mesopores also enhance the CO2 capture performance, owing to the capillary condensation effect.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile Synthesis of Porous Carbon Nitride Spheres with Hierarchical Three-Dimensional Mesostructures for CO2 Capture

Show Author's information Qiang Li1Jianping Yang1Dan Feng1Zhangxiong Wu1Qingling Wu1Sung Soo Park2Chang-Sik Ha2Dongyuan Zhao1( )
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Fudan UniversityShanghai200433China
Department of Polymer Science and EngineeringPusan National UniversityGeumjeong-gu, Busan609-735Korea

Abstract

Porous carbon nitride (CN) spheres with partially crystalline frameworks have been successfully synthesized via a nanocasting approach by using spherical mesoporous cellular silica foams (MCFs) as a hard template, and ethylenediamine and carbon tetrachloride as precursors. The resulting spherical CN materials have uniform diameters of ca. 4 μm, hierarchical three-dimensional (3-D) mesostructures with small and large mesopores with pore diameters centered at ca. 4.0 and 43 nm, respectively, a relatively high BET surface area of ~550 m2/g, and a pore volume of 0.90 cm3/g. High-resolution transmission electron microscope (HRTEM) images, wide-angle X-ray diffraction (XRD) patterns, and Raman spectra demonstrate that the porous CN material has a partly graphitized structure. In addition, elemental analyses, X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), and CO2 temperature-programmed desorption (CO2-TPD) show that the material has a high nitrogen content (17.8 wt%) with nitrogen-containing groups and abundant basic sites. The hierarchical porous CN spheres have excellent CO2 capture properties with a capacity of 2.90 mmol/g at 25 ℃ and 0.97 mmol/g at 75 ℃, superior to those of the pure carbon materials with analogous mesostructures. This can be mainly attributed to the abundant nitrogen-containing basic groups, hierarchical mesostructure, relatively high BET surface area and stable framework. Furthermore, the presence of a large number of micropores and small mesopores also enhance the CO2 capture performance, owing to the capillary condensation effect.

Keywords: carbon nitride, Mesoporous materials, CO2 capture, nanocasting, sphere, hard template

References(34)

1

Kawaguchi, M.; Yagi, S.; Enomoto, H. Chemical preparation and characterization of nitrogen-rich carbon nitride powders. Carbon 2004, 42, 345-350.

2

Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 2000, 12, 3264-3270.

3

Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L. Preparation of nitrogen-rich nanolayered, nanoclustered, and nanodendritic carbon nitrides. Angew. Chem. Int. Ed. 2005, 44, 737-739.

4

Pevida, C.; Drage, T. C.; Snape, C. E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon 2008, 46, 1464-1474.

5

Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes. New J. Chem. 2007, 31, 1455-1460.

6

Kim, M.; Hwang, S.; Yu, J. -S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007, 17, 1656-1659.

7

Chen, X.; Jun, Y. -S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X.; Antonietti, M.; Wang, X. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009, 21, 4093-4095.

8

Vinu, A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv. Funct. Mater. 2008, 18, 816-827.

9

Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv. Mater. 2005, 17, 1648-1652.

10

Jin, X.; Balasubramanian, V. V.; Selvan, S. T.; Sawant, D. P.; Chari, M. A.; Lu, G. Q.; Vinu, A. Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: A metal-free basic catalyst. Angew. Chem. Int. Ed. 2009, 48, 7884-7887.

11

Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. -O.; Schlogl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893-4908.

12

Fischer, A.; Antonietti, M.; Thomas, A. Growth confined by the nitrogen source: Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv. Mater. 2007, 19, 264-267.

13

Jun, Y. -S.; Hong, W. H.; Antonietti, M.; Thomas, A. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 2009, 21, 4270-4274.

14

Liu, L.; Ma, D.; Zheng, H.; Li, X.; Cheng, M.; Bao, X. Synthesis and characterization of microporous carbon nitride. Micropor. Mesopor. Mater. 2008, 110, 216-222.

15

Fischer, A.; Jun, Y. -S.; Thomas, A.; Antonietti, M. Synthesis of high-surface-area TiN/carbon composite materials with hierarchical porosity via "reactive templating". Chem. Mater. 2008, 20, 7383-7389.

16

Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D. Advances in CO2 capture technology—The US Department of Energy's Carbon Sequestration Program. Int. J. Greenhouse Gas Control 2008, 2, 9-20.

17

Seki, T.; Kokubo, Y.; Ichikawa, S.; Suzuki, T.; Kayaki, Y.; Ikariya, T. Mesoporous silica-catalysed continuous chemical fixation of CO2 with N, N, -dimethylethylenediamine in supercritical CO2: The efficient synthesis of 1, 3-dimethyl-2-imidazolidinone. Chem. Commun. 2009, 349-351.

18

Zhao, C.; Chen, X.; Zhao, C. CO2 absorption using dry potassium-based sorbents with different supports. Energy Fuels 2009, 23, 4683-4687.

19

Thote, J. A.; Iyer, K. S.; Chatti, R.; Labhsetwar, N. K.; Biniwale, R. B.; Rayalu, S. S. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 2010, 48, 396-402.

20

Drage, T. C.; Arenillas, A.; Smith, K. M.; Pevida, C.; Piippo, S.; Snape, C. E. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel 2007, 86, 22-31.

21

Liang, Z.; Fadhel, B.; Schneider, C. J.; Chaffee, A. L. Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption 2009, 15, 429-437.

22

Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Micropor. Mesopor. Mater. 2008, 116, 358-364.

23

Rinker, E.; Ashour, S. S.; Sandall, O. C. Absorption of carbon dioxide into aqueous blends of diethanolamine and methyldiethanolamine. Ind. Eng. Chem. Res. 2000, 39, 4346-4356.

24

Kohl, A.; Nielsen, R. Gas Purification, 5th ed.; Gulf Publishing Co. : Houston, 1997.

25

Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J. Surface modification of activated carbons for CO2 capture. Appl. Surf. Sci. 2008, 254, 7165-7172.

26

Plaza, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel 2007, 86, 2204-2212.

27

Han, Y.; Lee, S. S.; Ying, J. Y. Spherical siliceous mesocellular foam particles for high-speed size exclusion chromatography. Chem. Mater. 2007, 19, 2292-2298.

28

Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053-7059.

29

Sanchez-Lopez, J. C.; Donnet, C.; Lefebvre, F.; Fernandez-Ramos, C.; Fernandez, A. Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study. J. Appl. Phys. 2001, 90, 675-681.

30

Marton, D.; Boyd, K. J.; Al-Bayati, A. H.; Todorov, S. S.; Rabalais, J. W. Carbon nitride deposited using energetic species-A2-phase system. Phys. Rev. Lett. 1994, 73, 118-121.

31

Chen, Y. H.; Tay, B. K.; Lau, S. P.; Shi, X.; Qiao, X. L.; Chen, J. G.; Wu, Y. P.; Sun, Z. H.; Xie, C. S. Synthesis of superhard and elastic carbon nitride films by filtered cathodic vacuum arc combined with radio frequency ion beam source. J. Mater. Res. 2002, 17, 521-524.

32

Zelenák, V.; Badanicová, M.; Halamová, D.; Cejka, J.; Zukal, A.; Murafa, N.; Goerigk, G. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chem. Eng. J. 2008, 144, 336-342.

33

Chen, C.; Yang, S. -T.; Ahn, W. -S.; Ryoo, R. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 2009, 3627-3629.

34

Holland, B. T.; Abrams, L.; Stein, A. Dual templating of macroporous silicates with zeolitic microporous frameworks. J. Am. Chem. Soc. 1999, 121, 4308-4309.

File
nr-3-9-632_ESM.pdf (460.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 July 2010
Revised: 29 July 2010
Accepted: 29 July 2010
Published: 09 September 2010
Issue date: September 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 2089012, 20721063, 20821140537, 20871030), State Key Basic Research Program of PRC (Nos. 2006CB932302 and 2009AA033701), Shanghai Leading Academic Discipline Project (No. B108), and Science & Technology Commission of Shanghai Municipality (No. 08DZ2270500). C. S. Ha also thanks the National Research Foundation (NRF) of Korea for support through the Korea-China Joint Research Center Program on Mesoporous Thin Films (No. K20803001459-10B1200-00310) and the Acceleration Research Program (No. 2010-0000790).

Rights and permissions

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return