Journal Home > Volume 3 , Issue 8

The controllable synthesis of materials with the desired crystal structure and dimensionality is of great significance in material science. In this work we report the successful synthesis of amorphous and crystalline zinc silicates with different dimensionalities and well-defined shapes, including hollow spheres, nanowires and membranes. The structure-related absorption properties have been studied. A detailed study of their ability to remove Pb(Ⅱ), Cd(Ⅱ), Cr(Ⅲ), and Fe(Ⅲ) ions has been performed. The amorphous zero-dimensional (0-D) hollow spheres show the best removal ability for all the metal ions investigated. In particular, their absorption capacity for Pb(Ⅱ) ions is 129 mg/g, which is double the value reported for magnesium silicate hollow spheres. However, the removal abilities of crystalline one-dimensional (1-D) nanowires and two-dimensional (2-D) membranes are found to be dependent on the charge of the target metal ion. In general, nanowires show better removal capacity for trivalent ions, especially Fe(Ⅲ), while 2-D membranes exhibit better removal capacity for divalent ions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fine Tuning of the Dimensionality of Zinc Silicate Nanostructures and Their Application as Highly Efficient Absorbents for Toxic Metal Ions

Show Author's information Yan Yang1,2Yuan Zhuang1Yunhua He2Bo Bai2Xun Wang1( )
Department of Chemistry Tsinghua UniversityBeijing 100084 China
College of Environmental Science and Engineering Chang'an UniversityXi'an 710054 China

Abstract

The controllable synthesis of materials with the desired crystal structure and dimensionality is of great significance in material science. In this work we report the successful synthesis of amorphous and crystalline zinc silicates with different dimensionalities and well-defined shapes, including hollow spheres, nanowires and membranes. The structure-related absorption properties have been studied. A detailed study of their ability to remove Pb(Ⅱ), Cd(Ⅱ), Cr(Ⅲ), and Fe(Ⅲ) ions has been performed. The amorphous zero-dimensional (0-D) hollow spheres show the best removal ability for all the metal ions investigated. In particular, their absorption capacity for Pb(Ⅱ) ions is 129 mg/g, which is double the value reported for magnesium silicate hollow spheres. However, the removal abilities of crystalline one-dimensional (1-D) nanowires and two-dimensional (2-D) membranes are found to be dependent on the charge of the target metal ion. In general, nanowires show better removal capacity for trivalent ions, especially Fe(Ⅲ), while 2-D membranes exhibit better removal capacity for divalent ions.

Keywords: Hollow spheres, nanowires, membranes, absorbent

References(37)

1

Mohan, D.; Singh, K. P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agriculture waste. Water Res. 2002, 36, 2304–2318.

2

Namasivayam, C.; Kavitha, D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agriculture solid waste. Dyes Pigments 2002, 54, 47–58.

3

Mohan, D.; Singh, K. P.; Singh, V. K. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J. Hazard. Mater. B 2006, 135, 280–295.

4

Zhang, D. H.; Ryu, K. M.; Liu, X. L.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. W. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.

5

Tombros, N.; Buit, L.; Arfaoui, I.; Tsoufis, T.; Gournis, D.; Trikalitis, P. N.; Molen, S. J.; Rudolf, P.; Wees, B. J. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube. Nano Lett. 2008, 8, 3060–3064.

6

Li, W. X.; Li, Y.; Chen, R. H.; Zeng, R.; Lu, L.; Zhang, Y.; Tomsic, M.; Rindfleisch, M.; Dou, S. X. Increased super-conductivity for CNT doped MgB2 sintered in 5 T pulsed magnetic field. IEEE Trans. Appl. Supercon. 2009, 19, 2752–2755.

7

Kasumov, A. Y.; Deblock, R.; Kociak, M.; Reulet, B.; Bouchiat, H.; Khodos, I. I.; Gorbatov, Y. B.; Volkov, V. T.; Journet, C.; Burghard, M. Supercurrents through single-walled carbon nanotubes. Science 1999, 284, 1508–1511.

8

Hwang, G. L.; Hwang, K. C.; Shieh, Y. T.; Lin, S. J. Preparation of carbon nanotube encapsulated copper nanowires and their use as a reinforcement for Y–Ba–Cu–O super-conductors. Chem. Mater. 2003, 15, 1353–1357.

9

Bandow, S; Numao, S; Iijima, S. Variable-range hopping conduction in the assembly of boron-doped multiwalled carbon nanotubes. J. Phys. Chem. C. 2007, 111, 11763–11766.

10

Wang, J. J.; Yin, G. P.; Liu, H.; Li, R. Y.; Flemming, R. L.; Sun, X. L. Carbon nanotubes supported Pt–Au catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles. J. Power Sources 2009, 194, 668–673.

11

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

12

Girishkumar, G.; Hall, T. D.; Vinodgopal, K.; Kamat, P. V. Single wall carbon nanotube supports for portable direct methanol fuel cells. J. Phys. Chem. B 2006, 110, 107–114.

13

Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 2006, 22, 2392–2396.

14

Asuri, P.; Karajanagi, S. S.; Sellitto, E.; Kim, D. Y.; Kane, R. S.; Dordick, J. S. Water-soluble carbon nanotube–enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 2006, 95, 804–811.

15

Yu, D. C.; Lupton, E. M.; Liu, M.; Liu, W.; Liu, F. Collective magnetic behavior of graphene nanohole superlattices. Nano Res. 2008, 1, 56–62.

16

Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 1999, 38, 56–77.

DOI
17

Stein, A.; Melde, B. J.; Schroden, R. C. Hybrid inorganic–organic mesoporous silicates—Nanoscopic reactors coming of age. Adv. Mater. 2000, 12, 1403–1419.

DOI
18

Pai, R. A.; Humayun, R.; Schulberg, M. T.; Sengupta, A.; Sun, J. N.; Watkins, J. J. Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 2004, 303, 507–510.

19

Fotopoulos, A. P.; Triantafyllidis, K. S. Ethylene epoxidation on Ag catalysts supported on non-porous, microporous and mesoporous silicates. Catal. Today 2007, 127, 148–156.

20

Wang, X.; Zhuang, J.; Chen, J.; Zhou, K. B.; Li, Y. D. Thermally stable silicate nanotubes. Angew. Chem. Int. Ed. 2004, 43, 2017–2020.

21

Tsvelikhovsky, D.; Pessing, D.; Avnir, D.; Blum, J. Forcing a cis-product by matrix imprinting: Heck reaction catalyzed by palladium acetate entrapped within cis-imprinted sol–gel derived silicates. Adv. Synth. Catal. 2008, 350, 2856–2858.

22

Marin-Astorga, N.; Pecchi, G.; Pinnavaia, T. J.; Alvez-Manoli, G.; Reyes, P. Mesostructured silicas as supports for palladium-catalyzed hydrogenation of phenyl acetylene and 1-phenyl-1-hexyne to alkenes. J. Mol. Catal. A: Chem. 2006, 247, 145–152.

23

Kalinkin, A. M.; Kalinkina, E. V.; Zalkind, O. A. Mechanosorption of carbon dioxide by Ca- and Mg-containing silicates and alumosilicates Sorption of CO2 and structure-related chemical changes. Colloid J. 2009, 71, 185–192.

24

Katayama, S.; Yamada, N.; Awano, M. Preparation of silicates using HSi(OC2H5)3 and their NOx-adsorption behavior. J. SolGel Sci. Technol. 2004, 32, 311–316.

25

Takesue, M.; Suino, A.; Hakuta, Y.; Hayashi, H.; Smith, R. L, Jr. Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water. J. Solid State Chem. 2008, 181, 1307–1313.

26

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A water–ethanol mixed-solution hydrothermal route to silicates nanowires. J. Solid State Chem. 2005, 178, 2332–2338.

27

Xiong, L. M.; Shi, J. L.; Gu, J. L.; Shen, W. H.; Dong, X. P.; Chen, H. R.; Zhang, L. X.; Gao, J. H.; Ruan, M. L. Directed growth of well-aligned zinc silicate nanowires along the channels of surfactant-assembled mesoporous silica. Small 2005, 1, 1044–1047.

28

Wan, J. X.; Chen, X. Y.; Wang, Z. H.; Mu, L.; Qian, Y. T. One-dimensional rice-like Mn-doped Zn2SiO4: Preparation, characterization, luminescent properties and its stability. J. Cryst. Growth 2005, 280, 239–243.

29

Wang, H. F.; Ma, Y. Q.; Yi, G. S.; Chen, D. P. Synthesis of Mn-doped Zn2SiO4 rodlike nanoparticles through hydrothermal method. Mater. Chem. Phys. 2003, 82, 414–418.

30

Zeng, J. H.; Fu, H. L.; Lou, T. J.; Yu, Y.; Sun, Y. H.; Li, D. Y. Precursor, base concentration and solvent behavior on the formation of zinc silicate. Mater. Res. Bull. 2009, 44, 1106–1110.

31

Wan, J. X.; Wang, Z. H.; Chen, X. Y.; Mu, L.; Yu, W. C.; Qian, Y. T. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4: Mn2+ phosphor. J. Lumin. 2006, 121, 32–38.

32

Lou, T. J.; Zeng, J. H.; Lou, X. D.; Fu, H. L.; Wang, Y. F.; Ma, R. L.; Tong, L. J.; Chen, Y. L. A facile synthesis to Zn2SiO4: Mn2+ phosphor with controllable size and morphology at low temperature. J. Colloid Interface Sci. 2007, 314, 510–513.

33

Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 2006, 18, 2426–2431.

34

Hu, J. S.; Zhong, L. S.; Song, W. G.; Wan, L. J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 2008, 20, 2977–2982.

35

Peng, X. J.; Luan, Z. K.; Ding, J.; Di, Z. C.; Li, Y. H.; Tian, B. H. Ceria supported on carbon nanotubes for the removal of arsenate from water. Mater. Lett. 2005, 59, 339–403.

36

Yang, D. J.; Zheng, Z. F.; Liu, H. W.; Zhu, H. Y.; Ke, X. B.; Xu, Y.; Wu, D.; Sun, Y. Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J. Phys. Chem. C 2008, 112, 16275–16280.

37

Zhuang, Y.; Yang, Y.; Xiang, G. L.; Wang, X. Magnesium silicate hollow nanostructures as highly efficient absorbents for toxic metal ions. J. Phys. Chem. C 2009, 113, 10441–10445.

File
nr-3-8-581_ESM.pdf (546.8 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 February 2010
Revised: 14 May 2010
Accepted: 28 June 2010
Published: 26 July 2010
Issue date: August 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (No. 20725102), the Fok Ying Tung Education Foundation (No. 111012) and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (No. 2006CB932301)

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return