Journal Home > Volume 3 , Issue 8

Nanocrystalline intermetallics and alloys are novel materials with high surface areas which are potential low-cost and high-performance catalysts. Here, we report a general approach to the synthesis of a large variety of nanocrystalline intermetallics and alloys with controllable composition, size, and morphology: these include Au-, Pd-, Pt-, Ir-, Ru-, and Rh-based bi- or tri-metallic nanocrystals. We find that only those intermetallics and alloys whose effective electronegativity is larger than a critical value (1.93) can be prepared by co-reduction in our synthetic system. Our methodology provides a simple and convenient route to a variety of intermetallic and alloyed nanomaterials which are promising candidates for catalysts for reactions such as methanol oxidation, hydroformylation, the Suzuki reaction, cyclohexene hydroconversion, and the selective hydrogenation of acetylene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanocrystalline Intermetallics and Alloys

Show Author's information Dingsheng WangQing PengYadong Li( )
Department of Chemistry Tsinghua UniversityBeijing 100084 China

Abstract

Nanocrystalline intermetallics and alloys are novel materials with high surface areas which are potential low-cost and high-performance catalysts. Here, we report a general approach to the synthesis of a large variety of nanocrystalline intermetallics and alloys with controllable composition, size, and morphology: these include Au-, Pd-, Pt-, Ir-, Ru-, and Rh-based bi- or tri-metallic nanocrystals. We find that only those intermetallics and alloys whose effective electronegativity is larger than a critical value (1.93) can be prepared by co-reduction in our synthetic system. Our methodology provides a simple and convenient route to a variety of intermetallic and alloyed nanomaterials which are promising candidates for catalysts for reactions such as methanol oxidation, hydroformylation, the Suzuki reaction, cyclohexene hydroconversion, and the selective hydrogenation of acetylene.

Keywords: nanocrystals, controllable synthesis, Intermetallics, catalysts, alloys

References(26)

1

Elattar, A.; Takeshita, T.; Wallace, W. E.; Craig, R. S. Intermetallic compounds of the type MNi5 as methanation catalysts. Science 1977, 196, 1093–1094.

2

Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924–1926.

3

Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

4

Taub, A. I.; Fleischer, R. L. Intermetallic compounds for high-temperature structural use. Science 1989, 243, 616–621.

5

Rodriguez, J. A.; Goodman, D. W. The nature of the metal–metal bond in bimetallic surfaces. Science 1992, 257, 897–903.

6

Jaime, M.; Movshovich, R.; Stewart, G. R.; Beyermann, W. P.; Berisso, M. G.; Hundley, M. F.; Canfield, P. C.; Sarrao, J. L. Closing the spin gap in the Kondo insulator Ce3Bi4Pt3 at high magnetic fields. Nature 2000, 405, 160–163.

7

Gschneidner, K.; Russell, A.; Pecharsky, A.; Morris, J.; Zhang, Z. H.; Lograsso, T.; Hsu, D.; Lo, C. H. C.; Ye, Y. Y.; Slager, A.; Kesse, D. A family of ductile intermetallic compounds. Nat. Mater. 2003, 2, 587–591.

8

Krenke, T.; Duman, E.; Acet, M.; Wassermann, E. F.; Moya, X.; Manosa, L.; Planes, A. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 2005, 4, 450–454.

9

Novet, T.; Johnson, D. C. New synthetic approach to extended solids—selective synthesis of iron silicides via the amorphous state. J. Am. Chem. Soc. 1991, 113, 3398–3403.

10

Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184.

11

Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2003, 2, 145–150.

12

Banin, U. Tiny seeds make a big difference—a seeded-growth approach provides shape-controlled bimetallic nanocrystals and opens the way for a rich selection of new nanoscale building blocks. Nat. Mater. 2007, 6, 625–626.

13
Raney, M. Method of producing finely divided nickel. U.S. Patent 1628190, 1927.
14

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

15

Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

16

Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd–Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

17

Som, T.; Karmakar, B. Core–shell Au–Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano Res. 2009, 2, 607–616.

18

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

19

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

20

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.

21

Wang, D. S.; Xie, T.; Peng, Q.; Zhang, S. Y.; Chen, J.; Li, Y. D. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals. Chem. Eur. J. 2008, 14, 2507–2513.

22

Pauling, L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 1932, 54, 3570–3582.

23

Liu, X. Y.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li, J. Synthesis of thermally stable and highly active bimetallic Au–Ag nanoparticles on inert supports. Chem. Mater. 2009, 21, 410–418.

24

Wang, L. L.; Johnson, D. D. Predicted trends of core–shell preferences for 132 late transition-metal binary-alloy nanoparticles. J. Am. Chem. Soc. 2009, 131, 14023–14029.

25

Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

26

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

File
nr-3-8-574_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 June 2010
Accepted: 27 June 2010
Published: 20 July 2010
Issue date: August 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 90606006), and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (No. 2006CB932300). We thank Pu Xiao, Prof. Xinping Qiu, Prof. Dehua He, Prof. Dianqing Li, and Prof. Weiguo Song for characterizing the catalytic properties of the products.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return