Journal Home > Volume 3 , Issue 8

A simple, inexpensive direct micromolding method for patterning Au nanocrystal superlattices using a polydimethylsiloxane (PDMS) stamp has been developed. The method involves in situ synthesis of Au(I) dodecanethiolate and its decomposition leading to Au nanocrystals in the microchannels of the stamp which order themselves to form patterned superlattice stripes, in conformity with the stamp geometry. Owing to its insolubility in common solvents, the dodecanethiolate was made by reacting Au(PPh3)Cl and dodecanethiol in situ inside the microchannels, by injecting first the former solution in toluene at room temperature followed by the thiol solution at 120 ℃. Annealing the reaction mixture at 250 ℃, resulted in formation of nanocrystals (with a mean diameter of 7.5 nm) and hexagonal ordering. By using an external pressure while molding, parallel stripes with sub-100 nm widths were obtained. The choice of parameters such as injection temperature of the thiol and concentrations is shown to be important if an ordered superlattice is to be obtained. In addition, these parameters can be varied as a means to control the nanocrystal size.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Micro- and Nanostripes of Self-Assembled Au Nanocrystal Superlattices by Direct Micromolding

Show Author's information Boya RadhaGiridhar U. Kulkarni( )
Chemistry and Physics of Materials Unit and DST Unit on Nanoscience Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O.Bangalore 560064 India

Abstract

A simple, inexpensive direct micromolding method for patterning Au nanocrystal superlattices using a polydimethylsiloxane (PDMS) stamp has been developed. The method involves in situ synthesis of Au(I) dodecanethiolate and its decomposition leading to Au nanocrystals in the microchannels of the stamp which order themselves to form patterned superlattice stripes, in conformity with the stamp geometry. Owing to its insolubility in common solvents, the dodecanethiolate was made by reacting Au(PPh3)Cl and dodecanethiol in situ inside the microchannels, by injecting first the former solution in toluene at room temperature followed by the thiol solution at 120 ℃. Annealing the reaction mixture at 250 ℃, resulted in formation of nanocrystals (with a mean diameter of 7.5 nm) and hexagonal ordering. By using an external pressure while molding, parallel stripes with sub-100 nm widths were obtained. The choice of parameters such as injection temperature of the thiol and concentrations is shown to be important if an ordered superlattice is to be obtained. In addition, these parameters can be varied as a means to control the nanocrystal size.

Keywords: nanolithography, soft lithography, metal nanocrystal superlattice, micromolding, direct patterning

References(50)

1

Brust, M. Nanoparticle ensembles—nanocrystals come to order. Nat. Mater. 2005, 4, 364–365.

2

Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Metal nanoparticles and their assemblies. Chem. Soc. Rev. 2000, 29, 27–35.

3

Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42.

4

Agrawal, V. V.; Varghese, N.; Kulkami, G. U.; Rao, C. N. R. Effects of changes in the interparticle separation induced by alkanethiols on the surface plasmon band and other properties of nanocrystalline gold films. Langmuir 2008, 24, 2494-2500.

5

Salzemann, C.; Zhai, W.; Goubet, N.; Pileni, M. P. How to tune the Au internanocrystal distance in two-dimensional self-ordered superlattices. J. Phys. Chem. Lett. 2010, 1, 149–154.

6

Brock, S. L. All-inorganic nanocrystal arrays. Angew. Chem. Int. Ed. 2009, 48, 7484–7486.

7

Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989-1992.

8

Teranishi, T. Fabrication and electronic properties of gold nanoparticle superlattices. C. R. Chimie 2003, 6, 979-987.

9

Datta, S.; Janes, D. B.; Andres, R. P.; Kubiak, C. P.; Reifenberger, R. G. Molecular ribbons. Semicond. Sci. Tech. 1998, 13, 1347–1353.

10

Chen, C. F.; Tzeng, S. D.; Chen, H. Y.; Lin, K. J.; Gwo, S. Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J. Am. Chem. Soc. 2008, 130, 824–825.

11

Berven, C. A.; Wybourne, M. N.; Longstreth, L.; Hutchison, J. E. Nanoparticle based Boolean logic. Physica E 2003, 19, 246–250.

12

Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 1997, 277, 1978–1981.

13

Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R. Architectonic quantum dot solids. Acc. Chem. Res. 1999, 32, 415–423.

14

Black, C. T.; Murray, C. B.; Sandstrom, R. L.; Sun, S. H., Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 2000, 290, 1131–1134.

15

Warner, M. G.; Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nat. Mater. 2003, 2, 272–277.

16

Shibu, E. S.; Habeeb Muhammed, M. A.; Kimura, K.; Pradeep, T. Fluorescent superlattices of gold nanoparticles: A new class of functional materials. Nano Res. 2009, 2, 220–234.

17

Pileni, M. P. Supracrystals of inorganic nanocrystals: An open challenge for new physical properties. Acc. Chem. Res. 2008, 41, 1799–1809.

18

Hamann, H. F.; Woods, S. I.; Sun, S. Direct thermal patterning of self-assembled nanoparticles. Nano Lett. 2003, 3, 1643–1645.

19

Glass, R.; Arnold, M.; Blummel, J.; Kuller, A.; Moller, M.; Spatz, J. P. Micro-nanostructured interfaces fabricated by the use of inorganic block copolymer micellar monolayers as negative resist for electron-beam lithography. Adv. Funct. Mater. 2003, 13, 569–575.

20

Corbierre, M. K.; Beerens, J.; Lennox, R. B. Gold nanoparticles generated by electron beam lithography of gold(I)-thiolate thin films. Chem. Mater. 2005, 17, 5774–5779.

21

Corbierre, M. K.; Beerens, J.; Beauvais, J.; Lennox, R. B. Uniform one-dimensional arrays of tunable gold nanoparticles with tunable interparticle distances. Chem. Mater. 2005, 18, 2628–2631.

22

Werts, M. H. V.; Lambert, M.; Bourgoin, J. P.; Brust, M. Nanometer scale patterning of Langmuir–Blodgett films of gold nanoparticles by electron beam lithography. Nano Lett. 2002, 2, 43–47.

23

Lohau, J.; Friedrichowski, S.; Dumpich, G.; Wassermann, E. F. Electron-beam lithography with metal colloids: Direct writing of metallic nanostructures. J. Vac. Sci. Technol. B 1998, 16, 77–79.

24

Hoffmann, P.; Benassayag, G.; Gierak, J.; Flicstein, J.; Maarstumm, M.; Vandenbergh, H. Direct writing of gold nanostructures using a gold-cluster compound and a focused-ion beam. Appl. Phys. 1993, 74, 7588–7591.

25

Kim, H.; Kim, J.; Yang, H. J.; Suh, J.; Kim, T.; Han, B. W.; Kim, S.; Kim, D. S.; Pikhitsa, P. V.; Choi, M. Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nat. Nanotechnol. 2006, 1, 117–121.

26

Lee, J. P.; Kim, E. U.; Koh, H. D.; Kang, N. G.; Jung, G. Y.; Lee, J. S. The fabrication of nanopatterns with Au nanoparticles—embedded micelles via nanoimprint lithography. Nanotechnology 2009, 20, 365301.

27

Santhanam, V.; Andres, R. P. Microcontact printing of uniform nanoparticle arrays. Nano Lett. 2004, 4, 41–44.

28

Yun, S. H.; Sohn, B. H.; Jung, J. C.; Zin, W. C.; Ree, M.; Park, J. W. Micropatterning of a single layer of nanoparticles by lithographical methods with diblock copolymer micelles. Nanotechnology 2006, 17, 450–454.

29

Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2007, 2, 570–576.

30

Chen, J.; Mela, P.; Muller, M.; Lensen, M. C. Microcontact deprinting: A technique to pattern gold nanoparticles. ACS Nano 2009, 3, 1451–1456.

31

Cavallini, M.; Biscarini, F. Nanostructuring conjugated materials by lithographically controlled wetting. Nano Lett. 2003, 3, 1269–1271.

32

Lu, N.; Chen, X. D.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. F. Lateral patterning of luminescent CdSe nanocrystals by selective dewetting from self-assembled organic templates. Nano Lett. 2004, 4, 885–888.

33

Cheng, W. L.; Park, N. Y.; Walter, M. T.; Hartman, M. R.; Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nat. Nanotechnol. 2008, 3, 682–690.

34

Cheng, W. L.; Campolongo, M. J.; Cha, J. J.; Tan, S. J.; Umbach, C. C.; Muller, D. A.; Luo, D. Free-standing nanoparticle superlattice sheets controlled by DNA. Nat. Mater. 2009, 8, 519–525.

35

Gates, B. D.; Xu, Q.; Love, J. C.; Wolfe, D. B.; Whitesides, G. M. Unconventional nanofabrication. Ann. Rev. Mater. Res. 2004, 34, 339–372.

36

Kim, E.; Xia, Y.; Whitesides, G. M. Micromolding in capillaries: Applications in materials science. J. Am. Chem. Soc. 1996, 118, 5722–5731.

37

Martin, C. P.; Blunt, M. O.; Pauliac-Vaujour, E.; Stannard, A.; Moriarty, P.; Vancea, I.; Thiele, U. Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting. Phys. Rev. Lett. 2007, 99, 116103.

38

Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.

39

Akey, A.; Lu, C.; Yang, L.; Herman, I. P. Formation of thick, large-area nanoparticle superlattices in lithographically defined geometries. Nano Lett. 2010, 10, 1517–1521.

40

Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.

41

Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.

42

Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.

43
For instance in the Brust method, a complex, AuCl4-tetraoctylammonium bromide-alkanethiol serves as precursor for Au nanocrystals with NaBH4 as the reducing agent.
44

Carotenuto, G.; Martorana, B.; Perlo, P. B.; Nicolais, L. A universal method for the synthesis of metal and metal sulfide clusters embedded in polymer matrices. J. Mater. Chem. 2003, 13, 2927–2930.

45

Nakamoto, M.; Yamamoto, M.; Fukusumi, M. Thermolysis of gold(I) thiolate complexes producing novel gold nanoparticles passivated by alkyl groups. Chem. Commun. 2002, 1622–1623.

46

Thomas, P. J.; Kulkarni, G. U.; Rao, C. N. R. An investigation of two-dimensional arrays of thiolized Pd nanocrystals. J. Phys. Chem. B 2000, 104, 8138–8144.

47

Ristau, R.; Tiruvalam, R.; Clasen, P. L.; Gorskowski, E. P.; Harmer, M. P.; Kiely, C. J.; Hussain, I.; Brust, M. Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bull. 2009, 42, 133–143.

48

Sidhaye, D. S.; Prasad, B. L. V. Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: The "excluded" story of excess thiol. Chem. Mater. 2010, 22, 1680–1685.

49

Radha, B.; Kulkarni, G. U. A modified micromolding method for sub-100 nm direct patterning of Pd nanowires. Small 2009, 5, 2271–2275.

50

Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

File
nr-3-8-537_ESM.pdf (994.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 May 2010
Accepted: 08 June 2010
Published: 10 July 2010
Issue date: August 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors thank Professor C. N. R. Rao for his constant encouragement. Support from the Department of Science and Technology, India is gratefully acknowledged. B. R. thanks council for Scientific and Industrial Research (CSIR), India for financial assistance

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return